Sufficient dimension reduction through informative predictor subspace

被引:8
|
作者
Yoo, Jae Keun [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
central subspace; informative predictor subspace; linearity condition; regression; sufficient dimension reduction; SLICED INVERSE REGRESSION;
D O I
10.1080/02331888.2016.1148151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to define the central informative predictor subspace to contain the central subspace and to develop methods for estimating the former subspace. Potential advantages of the proposed methods are no requirements of linearity, constant variance and coverage conditions in methodological developments. Therefore, the central informative predictor subspace gives us the benefit of restoring the central subspace exhaustively despite failing the conditions. Numerical studies confirm the theories, and real data analyses are presented.
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 50 条
  • [41] EFFICIENT ESTIMATION IN SUFFICIENT DIMENSION REDUCTION
    Ma, Yanyuan
    Zhu, Liping
    ANNALS OF STATISTICS, 2013, 41 (01): : 250 - 268
  • [42] Sufficient dimension reduction with missing predictors
    Li, Lexin
    Lu, Wenbin
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 822 - 831
  • [43] Sufficient dimension reduction with additional information
    Hung, Hung
    Liu, Chih-Yen
    Lu, Henry Horng-Shing
    BIOSTATISTICS, 2016, 17 (03) : 405 - 421
  • [44] On hierarchical clustering in sufficient dimension reduction
    Yoo, Chaeyeon
    Yoo, Younju
    Um, Hye Yeon
    Yoo, Jae Keun
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2020, 27 (04) : 431 - 443
  • [45] Sufficient Dimension Reduction for Censored Predictors
    Tomassi, Diego
    Forzani, Liliana
    Bura, Efstathia
    Pfeiffer, Ruth
    BIOMETRICS, 2017, 73 (01) : 220 - 231
  • [46] SUFFICIENT DIMENSION REDUCTION FOR LONGITUDINAL DATA
    Bi, Xuan
    Qu, Annie
    STATISTICA SINICA, 2015, 25 (02) : 787 - 807
  • [47] Sufficient dimension reduction for compositional data
    Tomassi, Diego
    Forzani, Liliana
    Duarte, Sabrina
    Pfeiffer, Ruth M.
    BIOSTATISTICS, 2021, 22 (04) : 687 - 705
  • [48] A unified approach to sufficient dimension reduction
    Xue, Yuan
    Wang, Qin
    Yin, Xiangrong
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2018, 197 : 168 - 179
  • [49] Diagnostic studies in sufficient dimension reduction
    Chen, Xin
    Cook, R. Dennis
    Zou, Changliang
    BIOMETRIKA, 2015, 102 (03) : 545 - 558
  • [50] Sparse sufficient dimension reduction with heteroscedasticity
    Cheng, Haoyang
    Cui, Wenquan
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (01)