Sufficient dimension reduction through informative predictor subspace

被引:8
|
作者
Yoo, Jae Keun [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
central subspace; informative predictor subspace; linearity condition; regression; sufficient dimension reduction; SLICED INVERSE REGRESSION;
D O I
10.1080/02331888.2016.1148151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to define the central informative predictor subspace to contain the central subspace and to develop methods for estimating the former subspace. Potential advantages of the proposed methods are no requirements of linearity, constant variance and coverage conditions in methodological developments. Therefore, the central informative predictor subspace gives us the benefit of restoring the central subspace exhaustively despite failing the conditions. Numerical studies confirm the theories, and real data analyses are presented.
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 50 条
  • [21] Online sufficient dimension reduction through sliced inverse regression
    Cai, Zhanrui
    Li, Runze
    Zhu, Liping
    Journal of Machine Learning Research, 2020, 21
  • [22] Online Sufficient Dimension Reduction Through Sliced Inverse Regression
    Cai, Zhanrui
    Li, Runze
    Zhu, Liping
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [23] Sufficient dimension reduction and prediction through cumulative slicing PFC
    Xu, Xinyi
    Li, Xiangjie
    Zhang, Jingxiao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1172 - 1190
  • [24] Sufficient dimension reduction in regressions through cumulative Hessian directions
    Zhang, Li-Mei
    Zhu, Li-Ping
    Zhu, Li-Xing
    STATISTICS AND COMPUTING, 2011, 21 (03) : 325 - 334
  • [25] Sufficient dimension reduction in regressions through cumulative Hessian directions
    Li-Mei Zhang
    Li-Ping Zhu
    Li-Xing Zhu
    Statistics and Computing, 2011, 21 : 325 - 334
  • [26] Sufficient dimension reduction through discretization-expectation estimation
    Zhu, Liping
    Wang, Tao
    Zhu, Lixing
    Ferre, Louis
    BIOMETRIKA, 2010, 97 (02) : 295 - 304
  • [27] A brief review of linear sufficient dimension reduction through optimization
    Dong, Yuexiao
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2021, 211 : 154 - 161
  • [28] Tensor sufficient dimension reduction
    Zhong, Wenxuan
    Xing, Xin
    Suslick, Kenneth
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2015, 7 (03): : 178 - 184
  • [29] Transformed sufficient dimension reduction
    Wang, T.
    Guo, X.
    Zhu, L.
    Xu, P.
    BIOMETRIKA, 2014, 101 (04) : 815 - 829
  • [30] A note on sufficient dimension reduction
    Wen, Xuerong Meggie
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (08) : 817 - 821