Sufficient dimension reduction through informative predictor subspace

被引:8
|
作者
Yoo, Jae Keun [1 ]
机构
[1] Ewha Womans Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
central subspace; informative predictor subspace; linearity condition; regression; sufficient dimension reduction; SLICED INVERSE REGRESSION;
D O I
10.1080/02331888.2016.1148151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The purpose of this paper is to define the central informative predictor subspace to contain the central subspace and to develop methods for estimating the former subspace. Potential advantages of the proposed methods are no requirements of linearity, constant variance and coverage conditions in methodological developments. Therefore, the central informative predictor subspace gives us the benefit of restoring the central subspace exhaustively despite failing the conditions. Numerical studies confirm the theories, and real data analyses are presented.
引用
收藏
页码:1086 / 1099
页数:14
相关论文
共 50 条