Ergodicity in randomly perturbed quantum systems

被引:17
|
作者
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Lovecchio, Cosimo [1 ,2 ]
Muller, Matthias M. [1 ,2 ]
Lombardi, Pietro [1 ,2 ,5 ]
Caruso, Filippo [1 ,2 ,5 ]
Cataliotti, Francesco Saverio [1 ,2 ,5 ]
机构
[1] Univ Florence, QSTAR, LENS, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, CSDC, INFN, Via S Marta 3, I-50139 Florence, Italy
[4] Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy
[5] CNR, INO, UOS Sesto Fiorentino, Via N Carrara 1, I-50019 Sesto Fiorentino, Italy
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2017年 / 2卷 / 01期
关键词
quantum Zeno phenomena; ergodicity; atom chips; stochastic quantum measurements; LARGE DEVIATIONS;
D O I
10.1088/2058-9565/aa5d00
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show howsuch a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at randomtimes while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically showhowthemost probable value of the probability for the systemto be in a given state eventually deviates fromthe non-stochastic casewhen the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Classical route to ergodicity and scarring in collective quantum systems
    Sinha, Sudip
    Ray, Sayak
    Sinha, Subhasis
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (16)
  • [42] Ergodicity of complex dynamics and quantum tunneling in nonintegrable systems
    Koda, Ryonosuke
    Hanada, Yasutaka
    Shudo, Akira
    [J]. PHYSICAL REVIEW E, 2023, 108 (05)
  • [43] STRONGLY PERTURBED QUANTUM-SYSTEMS
    FRASCA, M
    [J]. PHYSICAL REVIEW A, 1993, 47 (03): : 2374 - 2375
  • [44] ASYMPTOTIC ANALYSIS OF INVARIANT DENSITY OF RANDOMLY PERTURBED DYNAMIC-SYSTEMS
    MIKAMI, T
    [J]. ANNALS OF PROBABILITY, 1990, 18 (02): : 524 - 536
  • [45] Recurrence in Systems with Randomly Perturbed Trajectories on the n-Dimensional Cube
    Szala, Leszek
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (11):
  • [46] Transmission and localisation in ordered and randomly-perturbed structured flexural systems
    Carta, Giorgio
    Brun, Michele
    Movchan, Alexander B.
    Boiko, Tetiana
    [J]. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2016, 98 : 126 - 152
  • [47] Memory effects in randomly perturbed systems exhibiting continuous symmetry breaking
    Cvetko, M.
    Ambrozic, M.
    Kralj, S.
    [J]. LIQUID CRYSTALS, 2009, 36 (01) : 33 - 41
  • [48] Identification of unstable fixed points for randomly perturbed dynamical systems with multistability
    Chen, Xian
    Jia, Chen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 521 - 545
  • [49] Triangles in randomly perturbed graphs
    Boettcher, Julia
    Parczyk, Olaf
    Sgueglia, Amedeo
    Skokan, Jozef
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2023, 32 (01): : 91 - 121
  • [50] SPECTRA OF RANDOMLY PERTURBED HAMILTONIANS
    BRONK, B
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (11): : 1378 - &