Ergodicity in randomly perturbed quantum systems

被引:17
|
作者
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Lovecchio, Cosimo [1 ,2 ]
Muller, Matthias M. [1 ,2 ]
Lombardi, Pietro [1 ,2 ,5 ]
Caruso, Filippo [1 ,2 ,5 ]
Cataliotti, Francesco Saverio [1 ,2 ,5 ]
机构
[1] Univ Florence, QSTAR, LENS, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, CSDC, INFN, Via S Marta 3, I-50139 Florence, Italy
[4] Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy
[5] CNR, INO, UOS Sesto Fiorentino, Via N Carrara 1, I-50019 Sesto Fiorentino, Italy
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2017年 / 2卷 / 01期
关键词
quantum Zeno phenomena; ergodicity; atom chips; stochastic quantum measurements; LARGE DEVIATIONS;
D O I
10.1088/2058-9565/aa5d00
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show howsuch a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at randomtimes while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically showhowthemost probable value of the probability for the systemto be in a given state eventually deviates fromthe non-stochastic casewhen the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MOTION SEPARATION IN CONTROLLED RANDOMLY-PERTURBED OSCILLATORY SYSTEMS
    KOVALEVA, AS
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 1994, 32 (05) : 25 - 31
  • [32] Randomly Perturbed Dynamics and Mean-Field Disordered Systems
    Chen, Hong-Bin
    [J]. ProQuest Dissertations and Theses Global, 2022,
  • [33] QUASI-STATIONARY DISTRIBUTIONS FOR RANDOMLY PERTURBED DYNAMICAL SYSTEMS
    Faure, Mathieu
    Schreiber, Sebastian J.
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (02): : 553 - 598
  • [34] Randomly perturbed dynamical systems and Aubry-Mather theory
    Camilli, Fabio
    Cesaroni, Annalisa
    Siconolfi, Antonio
    [J]. INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2009, 2 (3-4) : 139 - 169
  • [35] ASYMPTOTIC STABILITY OF RANDOMLY PERTURBED LINEAR PERIODIC-SYSTEMS
    CHOW, PL
    CHIOU, KL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (02) : 315 - 326
  • [36] Two distinct mechanisms of coherence in randomly perturbed dynamical systems
    DeVille, REL
    Vanden-Eijnden, E
    Muratov, CB
    [J]. PHYSICAL REVIEW E, 2005, 72 (03):
  • [37] Non-Ergodicity in open quantum systems through quantum feedback
    Clark, Lewis A.
    Torzewska, Fiona
    Maybee, Ben
    Beige, Almut
    [J]. EPL, 2020, 130 (05)
  • [38] Quantum chaos, dynamical systems and Schrodinger equations and quantum unique ergodicity
    de Verdiere, Yves Colin
    [J]. CURRENT SCIENCE, 2019, 116 (01): : 11 - 11
  • [39] Chaos and Ergodicity in Extended Quantum Systems with Noisy Driving
    Kos, Pavel
    Bertini, Bruno
    Prosen, Tomaz
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (19)
  • [40] Quantum ergodicity for a class of non-generic systems
    Asadi, P.
    Bakhshinezhad, F.
    Rezakhani, A. T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (05)