Ergodicity in randomly perturbed quantum systems

被引:17
|
作者
Gherardini, Stefano [1 ,2 ,3 ,4 ]
Lovecchio, Cosimo [1 ,2 ]
Muller, Matthias M. [1 ,2 ]
Lombardi, Pietro [1 ,2 ,5 ]
Caruso, Filippo [1 ,2 ,5 ]
Cataliotti, Francesco Saverio [1 ,2 ,5 ]
机构
[1] Univ Florence, QSTAR, LENS, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, Dept Phys & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, CSDC, INFN, Via S Marta 3, I-50139 Florence, Italy
[4] Univ Florence, Dept Informat Engn, Via S Marta 3, I-50139 Florence, Italy
[5] CNR, INO, UOS Sesto Fiorentino, Via N Carrara 1, I-50019 Sesto Fiorentino, Italy
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2017年 / 2卷 / 01期
关键词
quantum Zeno phenomena; ergodicity; atom chips; stochastic quantum measurements; LARGE DEVIATIONS;
D O I
10.1088/2058-9565/aa5d00
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical cornerstone of statistical mechanics is the ergodic assumption, i.e. the assumption that the time average of an observable equals its ensemble average. Here, we show howsuch a property is present when an open quantum system is continuously perturbed by an external environment effectively observing the system at randomtimes while the system dynamics approaches the quantum Zeno regime. In this context, by large deviation theory we analytically showhowthemost probable value of the probability for the systemto be in a given state eventually deviates fromthe non-stochastic casewhen the Zeno condition is not satisfied. We experimentally test our results with ultra-cold atoms prepared on an atom chip.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Convergence of Nonlinear Filters for Randomly Perturbed Dynamical Systems
    Vladimir M. Lucic
    Andrew J. Heunis
    [J]. Applied Mathematics and Optimization, 2003, 48 : 93 - 128
  • [22] Escape from attracting sets in randomly perturbed systems
    Rodrigues, Christian S.
    Grebogi, Celso
    de Moura, Alessandro P. S.
    [J]. PHYSICAL REVIEW E, 2010, 82 (04):
  • [23] EXIT PROBLEM FOR RANDOMLY PERTURBED DYNAMICAL-SYSTEMS
    MATKOWSKY, BJ
    SCHUSS, Z
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 33 (02) : 365 - 382
  • [24] AVERAGING IN RANDOMLY PERTURBED MULTIFREQUENCY NONLINEAR-SYSTEMS
    KOVALEVA, AS
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1995, 59 (01): : 27 - 33
  • [25] Generalized cell mapping for randomly perturbed dynamical systems
    Fischer, J
    Kreuzer, E
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (11): : 769 - 777
  • [26] ERGODICITY OF QUANTUM MANY-BODY SYSTEMS
    JANNER, A
    [J]. HELVETICA PHYSICA ACTA, 1963, 36 (02): : 155 - &
  • [27] Classical and Quantum Behavior of the Integrated Density of States for a Randomly Perturbed Lattice
    Fukushima, Ryoki
    Ueki, Naomasa
    [J]. ANNALES HENRI POINCARE, 2010, 11 (06): : 1053 - 1083
  • [28] RANDOMLY PERTURBED VIBRATIONS
    ELSHAMY, M
    [J]. JOURNAL OF APPLIED PROBABILITY, 1995, 32 (02) : 417 - 428
  • [29] Classical and Quantum Behavior of the Integrated Density of States for a Randomly Perturbed Lattice
    Ryoki Fukushima
    Naomasa Ueki
    [J]. Annales Henri Poincaré, 2010, 11 : 1053 - 1083
  • [30] Randomly Perturbed Dynamics and Mean-Field Disordered Systems
    Chen, Hong-Bin
    [J]. ProQuest Dissertations and Theses Global, 2022,