Subexponential instability in one-dimensional maps implies infinite invariant measure

被引:22
|
作者
Akimoto, Takuma [1 ]
Aizawa, Yoji [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Adv Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
chaos; Lyapunov methods; statistical mechanics; LYAPUNOV EXPONENTS; DYNAMICAL-SYSTEMS; TRANSFORMATIONS;
D O I
10.1063/1.3470091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize dynamical instability of weak chaos as subexponential instability. We show that a one-dimensional, conservative, ergodic measure preserving map with subexponential instability has an infinite invariant measure, and then we present a generalized Lyapunov exponent to characterize subexponential instability. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3470091]
引用
收藏
页数:7
相关论文
共 50 条
  • [41] PEIERLS INSTABILITY IN ONE-DIMENSIONAL SYSTEMS
    KRIVNOV, VY
    OVCHINNIKOV, AA
    JOURNAL OF MOLECULAR ELECTRONICS, 1989, 5 (01): : 79 - 85
  • [42] Reconstruction of the One-Dimensional Lebesgue Measure
    Endou, Noboru
    FORMALIZED MATHEMATICS, 2020, 28 (01): : 93 - 104
  • [43] Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps
    Seshadri, S
    Balakrishnan, V
    Lakshmibala, S
    PHYSICAL REVIEW E, 1999, 60 (01): : 386 - 390
  • [44] On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution
    Diakonos, F.K.
    Schmelcher, P.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 211 (04): : 199 - 203
  • [45] Noise-amplitude dependence of the invariant density for noisy, fully chaotic one-dimensional maps
    Seshadri, S.
    Balakrishnan, V.
    Lakshmibala, S.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 60 (01):
  • [46] On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution
    Diakonos, FK
    Schmelcher, P
    PHYSICS LETTERS A, 1996, 211 (04) : 199 - 203
  • [47] BIFURCATIONS OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL MAPS
    HOLMES, P
    WHITLEY, D
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 311 (1515): : 43 - 102
  • [48] Scattering by infinite one-dimensional rough surfaces
    Chandler-Wilde, SN
    Ross, CR
    Zhang, B
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1990): : 3767 - 3787
  • [49] One-dimensional gravity in infinite point distributions
    Gabrielli, A.
    Joyce, M.
    Sicard, F.
    PHYSICAL REVIEW E, 2009, 80 (04)
  • [50] Projective varieties invariant by one-dimensional foliations
    Soares, MG
    ANNALS OF MATHEMATICS, 2000, 152 (02) : 369 - 382