Subexponential instability in one-dimensional maps implies infinite invariant measure

被引:22
|
作者
Akimoto, Takuma [1 ]
Aizawa, Yoji [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Adv Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
chaos; Lyapunov methods; statistical mechanics; LYAPUNOV EXPONENTS; DYNAMICAL-SYSTEMS; TRANSFORMATIONS;
D O I
10.1063/1.3470091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize dynamical instability of weak chaos as subexponential instability. We show that a one-dimensional, conservative, ergodic measure preserving map with subexponential instability has an infinite invariant measure, and then we present a generalized Lyapunov exponent to characterize subexponential instability. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3470091]
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The dynamics of a family of one-dimensional maps
    Bassein, S
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (02): : 118 - 130
  • [32] Heredity in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Alvarez, G
    Montoya, F
    PHYSICAL REVIEW E, 1998, 58 (06): : 7214 - 7218
  • [33] Complexity, chaos and one-dimensional maps
    Steeb, WH
    Solms, F
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1996, 92 (07) : 353 - 354
  • [34] ONE-DIMENSIONAL MAPS AND POINCARE METRIC
    SWIATEK, G
    NONLINEARITY, 1992, 5 (01) : 81 - 108
  • [35] SUPERTRACK FUNCTIONS IN ONE-DIMENSIONAL MAPS
    LEO, M
    LEO, RA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1994, 109 (03): : 229 - 238
  • [36] ONE-DIMENSIONAL MAPS, INTERMITTENCY AND SCALING
    HACINLIYAN, A
    OZEL, RM
    FIRAT, FG
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (06): : 1147 - 1153
  • [37] WINDOW SCALING IN ONE-DIMENSIONAL MAPS
    POST, T
    CAPEL, HW
    VANDERWEELE, JP
    PHYSICS LETTERS A, 1989, 136 (03) : 109 - 113
  • [38] Differentiable Conjugacies for One-Dimensional Maps
    Glendinning, Paul
    Simpson, David J. W.
    DIFFERENCE EQUATIONS, DISCRETE DYNAMICAL SYSTEMS AND APPLICATIONS, IDCEA 2022, 2024, 444 : 115 - 130
  • [39] SOLITON INSTABILITY IN A ONE-DIMENSIONAL MAGNET
    KUMAR, P
    PHYSICAL REVIEW B, 1982, 25 (01): : 483 - 486
  • [40] THE INSTABILITY OF A ONE-DIMENSIONAL COLLAPSING CLOUD
    MUKHANOV, VF
    ASTRONOMICHESKII ZHURNAL, 1981, 58 (02): : 289 - 299