Subexponential instability in one-dimensional maps implies infinite invariant measure

被引:22
|
作者
Akimoto, Takuma [1 ]
Aizawa, Yoji [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Adv Sch Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
chaos; Lyapunov methods; statistical mechanics; LYAPUNOV EXPONENTS; DYNAMICAL-SYSTEMS; TRANSFORMATIONS;
D O I
10.1063/1.3470091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize dynamical instability of weak chaos as subexponential instability. We show that a one-dimensional, conservative, ergodic measure preserving map with subexponential instability has an infinite invariant measure, and then we present a generalized Lyapunov exponent to characterize subexponential instability. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3470091]
引用
收藏
页数:7
相关论文
共 50 条