Double Nanowires for Hybrid Quantum Devices

被引:7
|
作者
Kanne, Thomas [1 ]
Olsteins, Dags [1 ]
Marnauza, Mikelis [1 ,2 ]
Vekris, Alexandros [1 ,3 ]
Saldana, Juan Carlos Estrada [1 ]
Loric, Sara [1 ]
Schlosser, Rasmus D. [1 ]
Ross, Daniel [1 ]
Csonka, Szabolcs [4 ]
Grove-Rasmussen, Kasper [1 ]
Nygard, Jesper [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Lund Univ, Ctr Anal & Synth Lund, Box 124, S-22100 Lund, Sweden
[3] Univ Chinese Acad Sci, Sino Danish Coll SDC, 380 Huaibeizhuang, Beijing 101408, Peoples R China
[4] Budapest Univ Technol & Econ & Nanoelect, Hungarian Acad Sci, Momentum Res Grp, Dept Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
hybrid semiconductor-superconductor nanomaterials; parallel nanowires; quantum materials; semiconductor nanowires; TRANSPORT; EPITAXY; GROWTH;
D O I
10.1002/adfm.202107926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parallel 1D semiconductor channels connected by a superconducting strip constitute the core platform in several recent quantum device proposals that rely, for example, on Andreev processes or topological effects. In order to realize these proposals, the actual material systems must have high crystalline purity, and the coupling between the different elements should be controllable in terms of their interfaces and geometry. A strategy for synthesizing double InAs nanowires by the vapor-liquid-solid mechanism using III-V molecular beam epitaxy is presented. A superconducting layer is deposited onto nanowires without breaking the vacuum, ensuring pristine interfaces between the superconductor and the two semiconductor nanowires. The method allows for a high yield of merged as well as separate parallel nanowires with full or half-shell superconductor coatings. Their utility in complex quantum devices by electron transport measurements is demonstrated.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hybrid superconductor-quantum point contact devices using InSb nanowires
    Gill, S. T.
    Damasco, J.
    Car, D.
    Bakkers, E. P. A. M.
    Mason, N.
    APPLIED PHYSICS LETTERS, 2016, 109 (23)
  • [2] Hybrid quantum devices and quantum engineering
    Wallquist, M.
    Hammerer, K.
    Rabl, P.
    Lukin, M.
    Zoller, P.
    PHYSICA SCRIPTA, 2009, T137
  • [3] Quantum Devices - Nanowires charge towards integration
    Eriksson, Mark A.
    Friesen, Mark
    NATURE NANOTECHNOLOGY, 2007, 2 (10) : 595 - 596
  • [4] Epitaxial Pb on InAs nanowires for quantum devices
    Thomas Kanne
    Mikelis Marnauza
    Dags Olsteins
    Damon J. Carrad
    Joachim E. Sestoft
    Joeri de Bruijckere
    Lunjie Zeng
    Erik Johnson
    Eva Olsson
    Kasper Grove-Rasmussen
    Jesper Nygård
    Nature Nanotechnology, 2021, 16 : 776 - 781
  • [5] Epitaxial Pb on InAs nanowires for quantum devices
    Kanne, Thomas
    Marnauza, Mikelis
    Olsteins, Dags
    Carrad, Damon J.
    Sestoft, Joachim E.
    de Bruijckere, Joeri
    Zeng, Lunjie
    Johnson, Erik
    Olsson, Eva
    Grove-Rasmussen, Kasper
    Nygard, Jesper
    NATURE NANOTECHNOLOGY, 2021, 16 (07) : 776 - +
  • [6] Tunable double quantum dots in InAs nanowires
    Scheffler, Marc
    Nadj-Perge, Stevan
    Kouwenhoven, Leo P.
    Borgstroem, Magnus T.
    Bakkers, Erik P. A. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (05): : 1202 - 1204
  • [7] Hybrid superconductor–quantum dot devices
    Silvano De Franceschi
    Leo Kouwenhoven
    Christian Schönenberger
    Wolfgang Wernsdorfer
    Nature Nanotechnology, 2010, 5 : 703 - 711
  • [8] Hybrid quantum devices: Guest editorial
    Chu, Yiwen
    Pritchard, Jonathan D.
    Wang, Hailin
    Weides, Martin
    APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [9] Thermodynamics of hybrid quantum rotor devices
    Leitch, Heather
    Hammam, Kenza
    De Chiara, Gabriele
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [10] Spin Conductance of Nanowires with Double Coupled Quantum Dots
    Woloszyn, M.
    Spisak, B. J.
    Wojcik, P.
    Adamowski, J.
    ACTA PHYSICA POLONICA A, 2016, 129 (1A) : A114 - A116