Double Nanowires for Hybrid Quantum Devices

被引:7
|
作者
Kanne, Thomas [1 ]
Olsteins, Dags [1 ]
Marnauza, Mikelis [1 ,2 ]
Vekris, Alexandros [1 ,3 ]
Saldana, Juan Carlos Estrada [1 ]
Loric, Sara [1 ]
Schlosser, Rasmus D. [1 ]
Ross, Daniel [1 ]
Csonka, Szabolcs [4 ]
Grove-Rasmussen, Kasper [1 ]
Nygard, Jesper [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Lund Univ, Ctr Anal & Synth Lund, Box 124, S-22100 Lund, Sweden
[3] Univ Chinese Acad Sci, Sino Danish Coll SDC, 380 Huaibeizhuang, Beijing 101408, Peoples R China
[4] Budapest Univ Technol & Econ & Nanoelect, Hungarian Acad Sci, Momentum Res Grp, Dept Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
hybrid semiconductor-superconductor nanomaterials; parallel nanowires; quantum materials; semiconductor nanowires; TRANSPORT; EPITAXY; GROWTH;
D O I
10.1002/adfm.202107926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parallel 1D semiconductor channels connected by a superconducting strip constitute the core platform in several recent quantum device proposals that rely, for example, on Andreev processes or topological effects. In order to realize these proposals, the actual material systems must have high crystalline purity, and the coupling between the different elements should be controllable in terms of their interfaces and geometry. A strategy for synthesizing double InAs nanowires by the vapor-liquid-solid mechanism using III-V molecular beam epitaxy is presented. A superconducting layer is deposited onto nanowires without breaking the vacuum, ensuring pristine interfaces between the superconductor and the two semiconductor nanowires. The method allows for a high yield of merged as well as separate parallel nanowires with full or half-shell superconductor coatings. Their utility in complex quantum devices by electron transport measurements is demonstrated.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] GaN/AlN Axial Multi Quantum Well Nanowires for Optoelectronic Devices
    Conesa-Boj, S.
    Arbiol, J.
    Furtmayr, F.
    Stark, C.
    Schaefer, S.
    Stutzmann, M.
    Eickhoff, M.
    Peiro, F.
    Morante, J. R.
    PROCEEDINGS OF THE 2009 SPANISH CONFERENCE ON ELECTRON DEVICES, 2009, : 61 - +
  • [22] Direct band gap wurtzite GaP nanowires for LEDs and quantum devices
    Assali, S.
    Kriegner, D.
    Zardo, I.
    Plissard, S.
    Verheijen, M. A.
    Stangl, J.
    Haverkort, J. E. M.
    Bakkers, E. P. A. M.
    NANOEPITAXY: MATERIALS AND DEVICES VI, 2014, 9174
  • [23] Epitaxially Driven Phase Selectivity of Sn in Hybrid Quantum Nanowires
    Khan, Sabbir A.
    Marti-Sanchez, Sara
    Olsteins, Dags
    Lampadaris, Charalampos
    Carrad, Damon James
    Liu, Yu
    Quinones, Judith
    Spadaro, Maria Chiara
    Jespersen, Thomas Sand
    Krogstrup, Peter
    Arbiol, Jordi
    ACS NANO, 2023, 17 (12) : 11794 - 11804
  • [24] Gate-tunable superconducting quantum interference devices of PbS nanowires
    Kim, Hong-Seok
    Kim, Bum-Kyu
    Yang, Yiming
    Peng, Xingyue
    Lee, Soon-Gul
    Yu, Dong
    Doh, Yong-Joo
    APPLIED PHYSICS EXPRESS, 2016, 9 (02)
  • [25] Highly Stabilized Gradient Alloy Quantum Dots and Silica Hybrid Nanospheres by Core Double Shells for Photoluminescence Devices
    Xie, Hongxing
    Chen, Enguo
    Ye, Yun
    Xu, Sheng
    Guo, Tailiang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (04): : 1428 - 1434
  • [26] Spontaneous emission spectrum in double quantum dot devices
    Fujisawa, T
    Oosterkamp, TH
    van der Wiel, WG
    Broer, BW
    Aguado, R
    Tarucha, S
    Kouwenhoven, LP
    SCIENCE, 1998, 282 (5390) : 932 - 935
  • [27] Decoherence of the hybrid qubit in a double quantum dot
    Qin, Xiao-Ke
    EPL, 2016, 114 (03)
  • [28] Terahertz detection using double quantum well devices
    Khodier, MM
    Christodoulou, CG
    Simmons, JA
    MULTIFREQUENCY ELECTRONIC/PHOTONIC DEVICES AND SYSTEMS FOR DUAL-USE APPLICATIONS, 2001, 4490 : 104 - 113
  • [29] Magnetic polarization currents in double quantum dot devices
    Cho, SY
    McKenzie, RH
    Kang, K
    Kim, CK
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (07) : 1147 - 1154
  • [30] Quantum transport in double-gated graphene devices
    Velasco, J., Jr.
    Lee, Y.
    Jing, L.
    Liu, G.
    Bao, W.
    Lau, C. N.
    SOLID STATE COMMUNICATIONS, 2012, 152 (15) : 1301 - 1305