Double Nanowires for Hybrid Quantum Devices

被引:7
|
作者
Kanne, Thomas [1 ]
Olsteins, Dags [1 ]
Marnauza, Mikelis [1 ,2 ]
Vekris, Alexandros [1 ,3 ]
Saldana, Juan Carlos Estrada [1 ]
Loric, Sara [1 ]
Schlosser, Rasmus D. [1 ]
Ross, Daniel [1 ]
Csonka, Szabolcs [4 ]
Grove-Rasmussen, Kasper [1 ]
Nygard, Jesper [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Quantum Devices, DK-2100 Copenhagen, Denmark
[2] Lund Univ, Ctr Anal & Synth Lund, Box 124, S-22100 Lund, Sweden
[3] Univ Chinese Acad Sci, Sino Danish Coll SDC, 380 Huaibeizhuang, Beijing 101408, Peoples R China
[4] Budapest Univ Technol & Econ & Nanoelect, Hungarian Acad Sci, Momentum Res Grp, Dept Phys, Budafoki Ut 8, H-1111 Budapest, Hungary
基金
欧盟地平线“2020”; 新加坡国家研究基金会;
关键词
hybrid semiconductor-superconductor nanomaterials; parallel nanowires; quantum materials; semiconductor nanowires; TRANSPORT; EPITAXY; GROWTH;
D O I
10.1002/adfm.202107926
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Parallel 1D semiconductor channels connected by a superconducting strip constitute the core platform in several recent quantum device proposals that rely, for example, on Andreev processes or topological effects. In order to realize these proposals, the actual material systems must have high crystalline purity, and the coupling between the different elements should be controllable in terms of their interfaces and geometry. A strategy for synthesizing double InAs nanowires by the vapor-liquid-solid mechanism using III-V molecular beam epitaxy is presented. A superconducting layer is deposited onto nanowires without breaking the vacuum, ensuring pristine interfaces between the superconductor and the two semiconductor nanowires. The method allows for a high yield of merged as well as separate parallel nanowires with full or half-shell superconductor coatings. Their utility in complex quantum devices by electron transport measurements is demonstrated.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Theory of Hybrid Microwave-Photonic Quantum Devices
    Jirauschek, Christian
    LASER & PHOTONICS REVIEWS, 2023, 17 (12)
  • [32] Hybrid-Magnon Quantum Devices: Strategies and Approaches
    Li, Y.
    Qian, J. -C.
    Jiang, Z. -H.
    Lo, T. -H.
    Ding, D.
    Draher, T.
    Polakovic, T.
    Pfaff, W.
    Schleife, A.
    Zuo, J. -M.
    Kwok, W. -K.
    Novosad, V.
    Hoffmann, A.
    2022 INTERNATIONAL ELECTRON DEVICES MEETING, IEDM, 2022,
  • [33] Theory of Hybrid Microwave-Photonic Quantum Devices
    Jirauschek, Christian
    LASER & PHOTONICS REVIEWS, 2023,
  • [34] Top-gate defined double quantum dots in InAs nanowires
    Pfund, A.
    Shorubalko, I.
    Leturcq, R.
    Ensslin, K.
    APPLIED PHYSICS LETTERS, 2006, 89 (25)
  • [35] Quantum Transport in GaN/AlN Double-Barrier Heterostructure Nanowires
    Songmuang, R.
    Katsaros, G.
    Monroy, E.
    Spathis, P.
    Bougerol, C.
    Mongillo, M.
    De Franceschi, S.
    NANO LETTERS, 2010, 10 (09) : 3545 - 3550
  • [36] Enhanced and persistent photoconductivity in vertical silicon nanowires and ZnS nanoparticles hybrid devices
    Ahmad, Mushtaq
    Rasool, Kamran
    Rafiq, M. A.
    Hasan, M. M.
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [37] Amyloid Directed Synthesis of Titanium Dioxide Nanowires and Their Applications in Hybrid Photovoltaic Devices
    Bolisetty, Sreenath
    Adamcik, Jozef
    Heier, Jakob
    Mezzenga, Raffaele
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (16) : 3424 - 3428
  • [38] Coaxial Conjugated Polymer/Quantum Rod Assembly into Hybrid Nanowires with Preferred Quantum Rod Orientation
    Hwang, Jun Ho
    Jin, Seon-Mi
    Nam, Jinwoo
    Lee, Eunji
    CHEMISTRY OF MATERIALS, 2021, 33 (19) : 7878 - 7888
  • [39] Hybrid Quantum Well/Quantum Dot Structures for Broad Spectral Bandwidth Devices
    Chen, Siming
    Zhou, Kejia
    Zhang, Ziyang
    Childs, David T. D.
    Orchard, Jonathan R.
    Hogg, Richard A.
    Kennedy, Kenneth
    Hugues, Max
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XX, 2012, 8255
  • [40] Nanowires in Thermoelectric Devices
    Davami, Keivan
    Lee, Jeong-Soo
    Meyyappan, M.
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2011, 12 (06) : 227 - 233