Hybrid quantum devices and quantum engineering

被引:262
|
作者
Wallquist, M. [1 ,2 ]
Hammerer, K. [1 ,2 ]
Rabl, P. [3 ,4 ]
Lukin, M. [3 ,4 ]
Zoller, P. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
TRAPPED IONS; ONE-ATOM; MICROMECHANICAL RESONATOR; SUPERCONDUCTING QUBITS; RADIATION-PRESSURE; OPTICAL LATTICE; ELECTRON-SPIN; BACK-ACTION; CAVITY; PHOTON;
D O I
10.1088/0031-8949/2009/T137/014001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss prospects of building hybrid quantum devices involving elements of atomic and molecular physics, quantum optics and solid-state elements with the attempt to combine advantages of the respective systems in compatible experimental setups. In particular, we summarize our recent work on quantum hybrid devices and briefly discuss recent ideas for quantum networks. These include interfacing of molecular quantum memory with circuit QED, and using nanomechanical elements strongly coupled to qubits represented by electronic spins, as well as single atoms or atomic ensembles.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Quantum state engineering in hybrid open quantum systems
    Joshi, Chaitanya
    Larson, Jonas
    Spiller, Timothy P.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [2] The engineering of quantum-dot devices
    Kelly, MJ
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 361 (1803): : 393 - 400
  • [3] Hybrid quantum-classical modeling of quantum dot devices
    Kantner, Markus
    Mittnenzweig, Markus
    Koprucki, Thomas
    PHYSICAL REVIEW B, 2017, 96 (20)
  • [4] Hybrid superconductor–quantum dot devices
    Silvano De Franceschi
    Leo Kouwenhoven
    Christian Schönenberger
    Wolfgang Wernsdorfer
    Nature Nanotechnology, 2010, 5 : 703 - 711
  • [5] Hybrid quantum devices: Guest editorial
    Chu, Yiwen
    Pritchard, Jonathan D.
    Wang, Hailin
    Weides, Martin
    APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [6] Double Nanowires for Hybrid Quantum Devices
    Kanne, Thomas
    Olsteins, Dags
    Marnauza, Mikelis
    Vekris, Alexandros
    Saldana, Juan Carlos Estrada
    Loric, Sara
    Schlosser, Rasmus D.
    Ross, Daniel
    Csonka, Szabolcs
    Grove-Rasmussen, Kasper
    Nygard, Jesper
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (09)
  • [7] Thermodynamics of hybrid quantum rotor devices
    Leitch, Heather
    Hammam, Kenza
    De Chiara, Gabriele
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [8] Quantum engineering of nanoelectronic devices: the role of quantum confinement on mobility degradation
    Fairus, ATM
    Arora, VK
    MICROELECTRONICS JOURNAL, 2001, 32 (08) : 679 - 686
  • [9] Versatile Method of Engineering the Band Alignment and the Electron Wavefunction Hybridization of Hybrid Quantum Devices
    Li, Guoan
    Shi, Xiaofan
    Lin, Ting
    Yang, Guang
    Rossi, Marco
    Badawy, Ghada
    Zhang, Zhiyuan
    Shi, Jiayu
    Qian, Degui
    Lu, Fang
    Gu, Lin
    Wang, Anqi
    Tong, Bingbing
    Li, Peiling
    Lyu, Zhaozheng
    Liu, Guangtong
    Qu, Fanming
    Dou, Ziwei
    Pan, Dong
    Zhao, Jianhua
    Zhang, Qinghua
    Bakkers, Erik P. A. M.
    Nowak, Michal P.
    Wojcik, Pawel
    Lu, Li
    Shen, Jie
    ADVANCED MATERIALS, 2024, 36 (36)
  • [10] Bandgap engineering and quantum wells in optoelectronic devices
    Li, E.H.
    Weiss, B.L.
    Electronics and Communication Engineering Journal, 1991, 3 (02): : 63 - 79