Sequential Monte Carlo methods for navigation systems

被引:0
|
作者
Sotak, Milos [1 ]
机构
[1] Armed Forces Acad, Dept Elect, Liptovsky 03106 6, Mikulas, Slovakia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2011年 / 87卷 / 06期
关键词
INS; GPS; navigation systems; particle filter; SENSORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with new approach to navigation information processing using Sequential Monte Carlo Methods known as particle filtering. Although, the Sequential Monte Carlo Methods require huge amount of computing, these methods are more efficient than Kalman filters especially when the system is nonlinear or if probability density function of the errors is non-Gaussian. The paper presents integration of Inertial Navigation System (INS) and Global Positioning System (GPS) using Sequential Monte Carlo Methods for navigation information processing. Navigation systems were created in simulation environment. An original asset of the work consists in creation of models in the simulation environment to confirm the algorithms.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [21] Monte Carlo methods for polymeric systems
    de Pablo, JJ
    Escobedo, FA
    MONTE CARLO METHODS IN CHEMICAL PHYSICS, 1999, 105 : 337 - 367
  • [22] SEQUENTIAL MONTE CARLO
    HALTON, JH
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JAN): : 57 - &
  • [23] Sequential Monte Carlo for linear systems - a practical summary
    Halton, John H.
    MONTE CARLO METHODS AND APPLICATIONS, 2008, 14 (01): : 1 - 27
  • [24] Sequential Monte Carlo techniques for the solution of linear systems
    Halton, John H.
    Journal of Scientific Computing, 1994, 9 (02) : 213 - 257
  • [25] SEQUENTIAL MONTE CARLO METHODS FOR ESTIMATING DYNAMIC MICROECONOMIC MODELS
    Blevins, Jason R.
    JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (05) : 773 - 804
  • [26] Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 113 - 116
  • [27] Sequential Monte Carlo methods for permutation tests on truncated data
    Chen, Yuguo
    Liu, Jun S.
    STATISTICA SINICA, 2007, 17 (03) : 857 - 872
  • [28] Sequential Monte Carlo methods to train neural network models
    de Freitas, JFG
    Niranjan, M
    Gee, AH
    Doucet, A
    NEURAL COMPUTATION, 2000, 12 (04) : 955 - 993
  • [29] Satellite Image Denoising using Sequential Monte Carlo Methods
    Solarte, Kelvin
    Sanchez, Luis
    Ordonez, Joan
    INGENIERIA UC, 2014, 21 (02): : 35 - 42