Sequential Monte Carlo methods for permutation tests on truncated data

被引:0
|
作者
Chen, Yuguo [1 ]
Liu, Jun S.
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Biostat, Cambridge, MA 02138 USA
关键词
importance sampling; Markov chain Monte Carlo; permanent; permutation test; structural zero; zero-one table;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The permutation test is one of the oldest techniques for making statistical inferences. Monte Carlo methods and asymptotic formulas have been used to approximate the associated p-values. When data are truncated, however, the permutation null distribution is difficult to handle. We describe here an efficient sequential importance sampling strategy for generating permutations with restricted positions, which provides accurate p-value approximations in all examples we have tested. The algorithm also provides good estimates of permanents of zero-one matrices, which by itself is a challenging problem. The key to our strategy is a connection between allowable permutations and zero-one tables with structural zeros.
引用
收藏
页码:857 / 872
页数:16
相关论文
共 50 条
  • [1] Optimal generalized truncated sequential Monte Carlo test
    Silva, Ivair R.
    Assuncao, Renato M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 121 : 33 - 49
  • [2] Truncated sequential Monte Carlo test with exact power
    Silva, Ivair
    Assuncao, Renato
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2018, 32 (02) : 215 - 238
  • [3] On using truncated sequential probability ratio test boundaries for Monte Carlo implementation of hypothesis tests
    Fay, Michael P.
    Kim, Hyune-Ju
    Hachey, Mark
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2007, 16 (04) : 946 - 967
  • [4] Nested Sequential Monte Carlo Methods
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1292 - 1301
  • [5] Sequential Monte Carlo Methods in Random Intercept Models for Longitudinal Data
    Alvares, Danilo
    Armero, Carmen
    Forte, Anabel
    Chopin, Nicolas
    BAYESIAN STATISTICS IN ACTION, BAYSM 2016, 2017, 194 : 3 - 9
  • [6] Sequential Monte Carlo methods for multiple target tracking and data fusion
    Hue, C
    Le Cadre, JP
    Pérez, P
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 309 - 325
  • [7] Designing Monte Carlo implementations of permutation or bootstrap hypothesis tests
    Fay, MP
    Follmann, DA
    AMERICAN STATISTICIAN, 2002, 56 (01): : 63 - 70
  • [8] USING A SEQUENTIAL APPROXIMATION TO A PERMUTATION TEST IN MONTE-CARLO SIMULATIONS
    LOCK, RH
    AMERICAN STATISTICAL ASSOCIATION 1988 PROCEEDINGS OF THE STATISTICAL COMPUTING SECTION, 1988, : 368 - 372
  • [9] Sequential Monte Carlo methods for diffusion processes
    Jasra, Ajay
    Doucet, Arnaud
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2112): : 3709 - 3727
  • [10] Sequential Monte Carlo methods for navigation systems
    Sotak, Milos
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06): : 249 - 252