Sequential Monte Carlo methods for diffusion processes

被引:11
|
作者
Jasra, Ajay [1 ]
Doucet, Arnaud [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada
关键词
diffusions; sequential Monte Carlo; exact simulation; stochastic control; SENSITIVITY-ANALYSIS;
D O I
10.1098/rspa.2009.0206
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we show how to use sequential Monte Carlo methods to compute expectations of functionals of diffusions at a given time and the gradients of these quantities w.r.t. the initial condition of the process. In some cases, via the exact simulation of the diffusion, there is no time discretization error, otherwise the methods use Euler discretization. We illustrate our approach on both high- and low-dimensional problems from optimal control and establish that our approach substantially outperforms standard Monte Carlo methods typically adopted in the literature. The methods developed here are appropriate for solving a certain class of partial differential equations as well as for option pricing and hedging.
引用
收藏
页码:3709 / 3727
页数:19
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for filtering of unobservable components of multidimensional diffusion Markov processes
    Khazen, Ellida M.
    [J]. COGENT MATHEMATICS, 2016, 3
  • [2] Online sequential Monte Carlo smoother for partially observed diffusion processes
    Gloaguen, Pierre
    Etienne, Marie-Pierre
    Le Corff, Sylvain
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2018,
  • [3] Online sequential Monte Carlo smoother for partially observed diffusion processes
    Pierre Gloaguen
    Marie-Pierre Étienne
    Sylvain Le Corff
    [J]. EURASIP Journal on Advances in Signal Processing, 2018
  • [4] Nested Sequential Monte Carlo Methods
    Naesseth, Christian A.
    Lindsten, Fredrik
    Schon, Thomas B.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1292 - 1301
  • [5] Sequential Monte Carlo methods for navigation systems
    Sotak, Milos
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (06): : 249 - 252
  • [6] ON THE CONVERGENCE OF ADAPTIVE SEQUENTIAL MONTE CARLO METHODS
    Beskos, Alexandros
    Jasra, Ajay
    Kantas, Nikolas
    Thiery, Alexandre
    [J]. ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 1111 - 1146
  • [7] Properties of marginal sequential Monte Carlo methods
    Crucinio, Francesca R.
    Johansen, Adam M.
    [J]. STATISTICS & PROBABILITY LETTERS, 2023, 203
  • [8] Sequential Monte Carlo methods for dynamic systems
    Liu, JS
    Chen, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1032 - 1044
  • [9] Sequential Monte Carlo Methods for Option Pricing
    Jasra, Ajay
    Del Moral, Pierre
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (02) : 292 - 316
  • [10] Monte Carlo Methods and Stochastic Processes
    Tsodikov, Alexander
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2018, 86 (01) : 160 - 160