Sequential Monte Carlo methods for permutation tests on truncated data

被引:0
|
作者
Chen, Yuguo [1 ]
Liu, Jun S.
机构
[1] Univ Illinois, Dept Stat, Champaign, IL 61820 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Biostat, Cambridge, MA 02138 USA
关键词
importance sampling; Markov chain Monte Carlo; permanent; permutation test; structural zero; zero-one table;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The permutation test is one of the oldest techniques for making statistical inferences. Monte Carlo methods and asymptotic formulas have been used to approximate the associated p-values. When data are truncated, however, the permutation null distribution is difficult to handle. We describe here an efficient sequential importance sampling strategy for generating permutations with restricted positions, which provides accurate p-value approximations in all examples we have tested. The algorithm also provides good estimates of permanents of zero-one matrices, which by itself is a challenging problem. The key to our strategy is a connection between allowable permutations and zero-one tables with structural zeros.
引用
收藏
页码:857 / 872
页数:16
相关论文
共 50 条
  • [41] Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 113 - 116
  • [42] Sequential Monte Carlo methods to train neural network models
    de Freitas, JFG
    Niranjan, M
    Gee, AH
    Doucet, A
    NEURAL COMPUTATION, 2000, 12 (04) : 955 - 993
  • [43] Satellite Image Denoising using Sequential Monte Carlo Methods
    Solarte, Kelvin
    Sanchez, Luis
    Ordonez, Joan
    INGENIERIA UC, 2014, 21 (02): : 35 - 42
  • [45] Linear multistep methods, particle filtering and sequential Monte Carlo
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2013, 29 (08)
  • [46] Sequential Monte Carlo methods for stochastic volatility models: a review
    Bishwal, Jaya P. N.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (06) : 619 - 635
  • [47] Sequential Monte Carlo Methods in the nimble and nimbleSMC R Packages
    Michaud, Nicholas
    de Valpine, Perry
    Turek, Daniel
    Paciorek, Christopher J.
    Nguyen, Dao
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (03): : 1 - 39
  • [48] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (01) : 5 - 31
  • [49] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 614 - 621
  • [50] New sequential Monte Carlo methods for nonlinear dynamic systems
    Dong Guo
    Xiaodong Wang
    Rong Chen
    Statistics and Computing, 2005, 15 : 135 - 147