Sequential Monte Carlo methods for navigation systems

被引:0
|
作者
Sotak, Milos [1 ]
机构
[1] Armed Forces Acad, Dept Elect, Liptovsky 03106 6, Mikulas, Slovakia
来源
PRZEGLAD ELEKTROTECHNICZNY | 2011年 / 87卷 / 06期
关键词
INS; GPS; navigation systems; particle filter; SENSORS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper deals with new approach to navigation information processing using Sequential Monte Carlo Methods known as particle filtering. Although, the Sequential Monte Carlo Methods require huge amount of computing, these methods are more efficient than Kalman filters especially when the system is nonlinear or if probability density function of the errors is non-Gaussian. The paper presents integration of Inertial Navigation System (INS) and Global Positioning System (GPS) using Sequential Monte Carlo Methods for navigation information processing. Navigation systems were created in simulation environment. An original asset of the work consists in creation of models in the simulation environment to confirm the algorithms.
引用
收藏
页码:249 / 252
页数:4
相关论文
共 50 条
  • [31] Linear multistep methods, particle filtering and sequential Monte Carlo
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2013, 29 (08)
  • [32] Sequential Monte Carlo methods for stochastic volatility models: a review
    Bishwal, Jaya P. N.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2010, 13 (06) : 619 - 635
  • [33] Sequential Monte Carlo Methods in the nimble and nimbleSMC R Packages
    Michaud, Nicholas
    de Valpine, Perry
    Turek, Daniel
    Paciorek, Christopher J.
    Nguyen, Dao
    JOURNAL OF STATISTICAL SOFTWARE, 2021, 100 (03): : 1 - 39
  • [34] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 59 (01) : 5 - 31
  • [35] Structure from motion using sequential Monte Carlo methods
    Qian, G
    Chellappa, R
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 614 - 621
  • [36] Occlusion Management in Sequential Mean Field Monte Carlo Methods
    Medrano, Carlos
    Igual, Raul
    Orrite, Carlos
    Plaza, Inmaculada
    PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011, 2011, 6669 : 444 - 451
  • [37] Stopping-time resampling for sequential Monte Carlo methods
    Chen, YG
    Xie, JY
    Liu, JS
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2005, 67 : 199 - 217
  • [38] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Alexandros Beskos
    Ajay Jasra
    Ege A. Muzaffer
    Andrew M. Stuart
    Statistics and Computing, 2015, 25 : 727 - 737
  • [39] Some contributions to sequential Monte Carlo methods for option pricing
    Sen, Deborshee
    Jasra, Ajay
    Zhou, Yan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (04) : 733 - 752
  • [40] APPLICATION OF SEQUENTIAL MONTE CARLO METHODS FOR SPACE OBJECT TRACKING
    Hussein, Islam I.
    Zaidi, Waqar
    Faber, Weston
    Roscoe, Christopher W. T.
    Wilkins, Matthew P.
    Schumacher, Paul W., Jr.
    Bolden, Mark
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1313 - 1328