Pontryagin forms on (4r-2)-manifolds and symplectic structures on the spaces of Riemannian metrics

被引:3
|
作者
Ferreiro Perez, R. [1 ]
Munoz Masque, J. [2 ]
机构
[1] Univ Complutense Madrid, Dept Econ Financiera & Contabilidad 1, Fac Ciencias Econ & Empresariales, Pozuelo De Alarcon 28223, Spain
[2] CSIC, Insituto Fis Aplicada, E-28006 Madrid, Spain
关键词
Bundle of Riemannian metrics; Diffeomorphism invariance; Equivariant characteristic classes; Universal Pontryagin forms; Pre-symplectic structure; Weil-Petersson symplectic form; EQUIVARIANT CHARACTERISTIC CLASSES; CO-HOMOLOGY; CONNECTIONS; COHOMOLOGY; BUNDLE;
D O I
10.1016/j.difgeo.2012.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Pontryagin forms on the 1-jet bundle of Riemannian metrics, are shown to provide in a natural way diffeomorphism-invariant pre-symplectic structures on the space of Riemannian metrics for the dimensions n equivalent to 2 (mod 4). The equivariant Pontryagin forms provide canonical moment maps for these structures. In dimension two, the symplectic reduction corresponding to the pre-symplectic form and its moment map attached to the first Pontryagin form, is proved to coincide with the Teichmuller space endowed with the Weil-Petersson symplectic form. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 215
页数:10
相关论文
共 50 条