The Pontryagin forms on the 1-jet bundle of Riemannian metrics, are shown to provide in a natural way diffeomorphism-invariant pre-symplectic structures on the space of Riemannian metrics for the dimensions n equivalent to 2 (mod 4). The equivariant Pontryagin forms provide canonical moment maps for these structures. In dimension two, the symplectic reduction corresponding to the pre-symplectic form and its moment map attached to the first Pontryagin form, is proved to coincide with the Teichmuller space endowed with the Weil-Petersson symplectic form. (C) 2012 Elsevier B.V. All rights reserved.
机构:Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Haze, Seiya
Katayama, Noriaki
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Prefectural Coll Technol, Dept Ind Syst Engn, Mechatron Course, Neyagawa, Osaka 5728572, JapanUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Katayama, Noriaki
Matsushita, Yasuo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shiga Prefecture, Sch Engn, Sect Math, Hikone 5228533, JapanUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain