Symplectic, Hermitian and Kahler Structures on Walker 4-Manifolds

被引:4
|
作者
Garcia-Rio, Eduardo [1 ]
Haze, Seiya
Katayama, Noriaki [2 ]
Matsushita, Yasuo [3 ]
机构
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
[2] Osaka Prefectural Coll Technol, Dept Ind Syst Engn, Mechatron Course, Neyagawa, Osaka 5728572, Japan
[3] Univ Shiga Prefecture, Sch Engn, Sect Math, Hikone 5228533, Japan
关键词
Four-dimensional Walker metric; symplectic structure; Hermitian structure; Kahler structure; Einstein metric;
D O I
10.1007/s00022-008-1999-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We call a pseudo-Riemannian 4-manifold, which admits a field of parallel null 2-planes, a Walker 4-manifold. A pseudo-Riemannian metric of a Walker 4-manifold is necessarily of neutral signature, and it admits an orthogonal almost complex structure. We show that such a Walker 4-manifold can carry various structures with respect to a certain kind of almost complex structure, e.g., symplectic structures, Kahler structures, Hermitian structures, according as the properties of certain functions which define the canonical form of the metric. The combination of these structures are also analyzed.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [1] Hermitian conformal classes and almost Kahler structures on 4-manifolds
    Apostolov, V
    Draghici, T
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1999, 11 (02) : 179 - 195
  • [2] Almost Kahler Walker 4-manifolds
    Davidov, J.
    Diaz-Ramos, J. C.
    Garcia-Rio, E.
    Matsushita, Y.
    Muskarov, O.
    Vazquez-Lorenzo, R.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (03) : 1075 - 1088
  • [3] Para-Kahler-Einstein structures on Walker 4-manifolds
    Iscan, Murat
    Caglar, Gulnur
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (02)
  • [4] Hermitian-Walker 4-manifolds
    Davidov, J.
    Diaz-Ramos, J. C.
    Garcia-Rio, E.
    Matsushita, Y.
    Muskarov, O.
    Vazquez-Lorenzo, R.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (03) : 307 - 323
  • [5] On Walker 4-manifolds with pseudo bi-Hermitian structures
    Turanli, Sibel
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2299 - 2307
  • [6] Constructing the Kahler and the symplectic structures from certain spinors on 4-manifolds
    Byun, Y
    Lee, Y
    Park, J
    Ryu, JS
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (04) : 1161 - 1168
  • [7] Symplectic 4-manifolds with Hermitian Weyl tensor
    Apostolov, V
    Armstrong, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) : 4501 - 4513
  • [8] Anti-symplectic involutions on non-Kahler symplectic 4-manifolds
    Cho, Yong Seung
    Hong, Yoon Hi
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 757 - 766
  • [9] Isotropic Kahler structures on Engel 4-manifolds
    García-Río, E
    Matsushita, Y
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2000, 33 (3-4) : 288 - 294
  • [10] Symplectic surfaces in symplectic 4-manifolds
    Cho, MS
    Cho, YS
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (01): : 77 - 87