Symplectic, Hermitian and Kahler Structures on Walker 4-Manifolds
被引:4
|
作者:
Garcia-Rio, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Garcia-Rio, Eduardo
[1
]
Haze, Seiya
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Haze, Seiya
Katayama, Noriaki
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Prefectural Coll Technol, Dept Ind Syst Engn, Mechatron Course, Neyagawa, Osaka 5728572, JapanUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Katayama, Noriaki
[2
]
Matsushita, Yasuo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shiga Prefecture, Sch Engn, Sect Math, Hikone 5228533, JapanUniv Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
Matsushita, Yasuo
[3
]
机构:
[1] Univ Santiago de Compostela, Fac Math, Dept Geometry & Topol, Santiago De Compostela 15782, Spain
[2] Osaka Prefectural Coll Technol, Dept Ind Syst Engn, Mechatron Course, Neyagawa, Osaka 5728572, Japan
We call a pseudo-Riemannian 4-manifold, which admits a field of parallel null 2-planes, a Walker 4-manifold. A pseudo-Riemannian metric of a Walker 4-manifold is necessarily of neutral signature, and it admits an orthogonal almost complex structure. We show that such a Walker 4-manifold can carry various structures with respect to a certain kind of almost complex structure, e.g., symplectic structures, Kahler structures, Hermitian structures, according as the properties of certain functions which define the canonical form of the metric. The combination of these structures are also analyzed.
机构:Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
Davidov, J.
Diaz-Ramos, J. C.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
Diaz-Ramos, J. C.
Garcia-Rio, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
Garcia-Rio, E.
Matsushita, Y.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
Matsushita, Y.
Muskarov, O.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
Muskarov, O.
Vazquez-Lorenzo, R.
论文数: 0引用数: 0
h-index: 0
机构:Univ Santiago de Compostela, Dept Geometry, Fac Math, Santiago De Compostela 15782, Spain
机构:
Bulgarian Acad Sci, Inst Math & Informat, Sofia, BulgariaUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
Davidov, J.
Diaz-Ramos, J. C.
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Ireland Univ Coll Cork, Dept Math, Cork, IrelandUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
Diaz-Ramos, J. C.
Garcia-Rio, E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
Garcia-Rio, E.
Matsushita, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shiga Prefecture, Sch Engn, Sect Math, Hikone 5228533, JapanUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
Matsushita, Y.
Muskarov, O.
论文数: 0引用数: 0
h-index: 0
机构:
Bulgarian Acad Sci, Inst Math & Informat, Sofia, BulgariaUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain
Muskarov, O.
Vazquez-Lorenzo, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Math, Santiago De Compostela 15782, SpainUniv Santiago de Compostela, Fac Math, Santiago De Compostela 15782, Spain