Pontryagin forms on (4r-2)-manifolds and symplectic structures on the spaces of Riemannian metrics

被引:3
|
作者
Ferreiro Perez, R. [1 ]
Munoz Masque, J. [2 ]
机构
[1] Univ Complutense Madrid, Dept Econ Financiera & Contabilidad 1, Fac Ciencias Econ & Empresariales, Pozuelo De Alarcon 28223, Spain
[2] CSIC, Insituto Fis Aplicada, E-28006 Madrid, Spain
关键词
Bundle of Riemannian metrics; Diffeomorphism invariance; Equivariant characteristic classes; Universal Pontryagin forms; Pre-symplectic structure; Weil-Petersson symplectic form; EQUIVARIANT CHARACTERISTIC CLASSES; CO-HOMOLOGY; CONNECTIONS; COHOMOLOGY; BUNDLE;
D O I
10.1016/j.difgeo.2012.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Pontryagin forms on the 1-jet bundle of Riemannian metrics, are shown to provide in a natural way diffeomorphism-invariant pre-symplectic structures on the space of Riemannian metrics for the dimensions n equivalent to 2 (mod 4). The equivariant Pontryagin forms provide canonical moment maps for these structures. In dimension two, the symplectic reduction corresponding to the pre-symplectic form and its moment map attached to the first Pontryagin form, is proved to coincide with the Teichmuller space endowed with the Weil-Petersson symplectic form. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 215
页数:10
相关论文
共 50 条
  • [21] (1,2)-symplectic metrics, flag manifolds and tournaments
    Cohen, N
    Negreiros, CJC
    San Martin, LAB
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 641 - 649
  • [22] Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems
    Mokhov, OI
    RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (03) : 515 - 622
  • [23] Riemannian Structures on Zn2-Manifolds
    Bruce, Andrew James
    Grabowski, Janusz
    MATHEMATICS, 2020, 8 (09)
  • [24] DE RHAM REGULARIZATION OPERATORS IN ORLICZ SPACES OF DIFFERENTIAL FORMS ON RIEMANNIAN MANIFOLDS
    Kopylov, Ya. A.
    Panenko, R. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 361 - 371
  • [25] SOBOLEV TYPE EQUATIONS IN SPACES OF DIFFERENTIAL FORMS ON RIEMANNIAN MANIFOLDS WITHOUT BOUNDARY
    Shafranov, D. E.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2022, 15 (01): : 112 - 122
  • [26] 4-manifolds with inequivalent symplectic forms and 3-manifolds with inequivalent fibrations
    McMullen, CT
    Taubes, CH
    MATHEMATICAL RESEARCH LETTERS, 1999, 6 (5-6) : 681 - 696
  • [27] (1,2)-symplectic structures on flag manifolds
    Mo, XH
    Negreiros, CJC
    TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (02) : 271 - 282
  • [28] CANONICAL FORMS FOR TN-3-STRUCTURES IN PSEUDO-RIEMANNIAN MANIFOLDS
    BENENTI, S
    FRANCAVIGLIA, M
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1979, 30 (02): : 143 - 157
  • [29] Constructing symplectic forms on 4-manifolds which vanish on circles
    Gay, DT
    Kirby, R
    GEOMETRY & TOPOLOGY, 2004, 8 : 743 - 777
  • [30] D n,r is not potentially nilpotent for n a©3/4 4r-2
    Shao, Yanling
    Gao, Yubin
    Gao, Wei
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 671 - 679