Constructing symplectic forms on 4-manifolds which vanish on circles

被引:23
|
作者
Gay, DT
Kirby, R
机构
[1] Univ Quebec, CIRGET, Montreal, PQ H3C 3P8, Canada
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
GEOMETRY & TOPOLOGY | 2004年 / 8卷
基金
美国国家科学基金会;
关键词
symplectic; 4-manifold; spin(C); almost complex; harmonic;
D O I
10.2140/gt.2004.8.743
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a smooth, closed, oriented 4-manifold X and alpha is an element ofH(2)(X, Z) such that alpha . alpha > 0, a closed 2-form omega is constructed, Poincare dual to alpha, which is symplectic on the complement of a finite set of unknotted circles Z. The number of circles, counted with sign, is given by d = (c(1)(s)(2)-3sigma(X)-2chi(X))/4, where s is a certain spin(C) structure naturally associated to omega.
引用
收藏
页码:743 / 777
页数:35
相关论文
共 50 条