Enumerating all Hamilton Cycles and Bounding the Number of Hamilton Cycles in 3-Regular Graphs

被引:0
|
作者
Gebauer, Heidi [1 ]
机构
[1] ETH, Inst Theoret Comp Sci, CH-8092 Zurich, Switzerland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276(n)), improving on Eppstein's previous bound. The resulting new upper bound of O(1.276n) for the maximum number of Hamilton cycles in 3-regular n-vertex graphs gets close to the best known lower bound of Omega(1.259(n)). Our method differs from Eppstein's in that he considers in each step a new graph and modifies it, while we fix (at the very beginning) one Hamilton cycle C and then proceed around C, successively producing partial Hamilton cycles.
引用
收藏
页数:28
相关论文
共 50 条