FROM NEWTON TO NAVIER-STOKES, OR HOW TO CONNECT FLUID MECHANICS EQUATIONS FROM MICROSCOPIC TO MACROSCOPIC SCALES

被引:15
|
作者
Gallagher, Isabelle [1 ,2 ]
机构
[1] Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
[2] Ecole Normale Super Paris, DMA, UMR 8553, Paris, France
关键词
Kinetic equations; fluid dynamics; particle systems; Boltzmann equation; Navier-Stokes equation; Boltzmann-Grad limit; low density limit; LINEAR BOLTZMANN-EQUATION; KINETIC-EQUATIONS; GLOBAL-SOLUTIONS; DYNAMIC LIMITS; RAREFIED-GAS; DERIVATION; PARTICLE; EXISTENCE; MOTION; DIFFUSION;
D O I
10.1090/bull/1650
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this survey we present an overview of some mathematical results concerning the passage from the microscopic description of fluids via Newton's laws to the macroscopic description via the Navier-Stokes equations.
引用
收藏
页码:65 / 85
页数:21
相关论文
共 50 条
  • [31] An AIM and one-step Newton method for the Navier-Stokes equations
    Li, KT
    Hou, YR
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (46-47) : 6141 - 6155
  • [32] Preliminary verification of incompressible Navier-Stokes equations solved by The Newton method
    Guo J.
    Zhang S.
    Yang C.
    Wang J.
    Huang S.
    Wang K.
    International Journal of Advanced Nuclear Reactor Design and Technology, 2020, 2 : 69 - 85
  • [33] Finite difference and finite volume techniques for the solution of Navier-Stokes equations in cardiovascular fluid mechanics
    Tsangaris, S
    Pappou, T
    CARDIOVASCULAR FLUID MECHANICS, 2003, (446): : 137 - 186
  • [34] Preconditioning techniques for Newton's method for the incompressible Navier-Stokes equations
    Elman, HC
    Loghin, D
    Wathen, AJ
    BIT NUMERICAL MATHEMATICS, 2003, 43 (05) : 961 - 974
  • [35] Implicit Newton-GMRES methods for the compressible Navier-Stokes equations
    Tefy, T
    Leyland, P
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 560 - 566
  • [36] Certain aspects of applying Newton’s method to the Navier-Stokes equations
    M. E. Bogovskii
    Doklady Mathematics, 2009, 79 : 351 - 355
  • [37] A robust monolithic nonlinear Newton method for the compressible Navier-Stokes Equations
    Sukas, Hulya
    Sahin, Mehmet
    COMPUTERS & FLUIDS, 2025, 289
  • [38] Newton's method for the Navier-Stokes equations with finite-element initial guess of Stokes equations
    Kim, SD
    Lee, YH
    Shin, BC
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 51 (05) : 805 - 816
  • [39] From Navier-Stokes to Einstein
    Irene Bredberg
    Cynthia Keeler
    Vyacheslav Lysov
    Andrew Strominger
    Journal of High Energy Physics, 2012
  • [40] From Non-local to Local Navier-Stokes Equations
    Jarrin, Oscar
    Loachamin, Geremy
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (03):