An AIM and one-step Newton method for the Navier-Stokes equations

被引:42
|
作者
Li, KT [1 ]
Hou, YR [1 ]
机构
[1] Xian Jiaotong Univ, Coll Sci, Xian 710049, Peoples R China
关键词
finite element; the Navier-Stokes equations; two-level method;
D O I
10.1016/S0045-7825(01)00213-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we investigate a two-level finite element approximation to the Navier-Stokes equations by means of a new approximate inertial manifold (AIM). Then we construct a new AIM-based numerical scheme and show that the convergence rate of the new approximation obtained by this AIM method is better than the double of the convergence rate of the standard Galerkin finite element solution. In addition, we also show that the new AIM scheme is equivalent to a one-step Newton iterative scheme for the Navier-Stokes equations in a suitable Hilbert space. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:6141 / 6155
页数:15
相关论文
共 50 条
  • [1] NEWTON METHOD SOLVER FOR THE AXISYMMETRICAL NAVIER-STOKES EQUATIONS
    ORKWIS, PD
    MCRAE, DS
    AIAA JOURNAL, 1992, 30 (06) : 1507 - 1514
  • [2] A Newton-GMRES method for the parallel Navier-Stokes equations
    Hauser, J
    Williams, RD
    Paap, HG
    Spel, M
    Muylaert, J
    Winkelmann, R
    PARALLEL COMPUTATIONAL FLUID DYNAMICS: IMPLEMENTATIONS AND RESULTS USING PARALLEL COMPUTERS, 1996, : 585 - 592
  • [3] A Newton method for the resolution of steady stochastic Navier-Stokes equations
    Le Maitre, Olivier
    COMPUTERS & FLUIDS, 2009, 38 (08) : 1566 - 1579
  • [4] A FRACTIONAL STEP METHOD FOR REGULARIZED NAVIER-STOKES EQUATIONS
    VARNHORN, W
    LECTURE NOTES IN MATHEMATICS, 1992, 1530 : 196 - 209
  • [5] COMPARISON OF NEWTON AND QUASI-NEWTON METHOD SOLVERS FOR THE NAVIER-STOKES EQUATIONS
    ORKWIS, PD
    AIAA JOURNAL, 1993, 31 (05) : 832 - 836
  • [6] Newton linearization of the incompressible Navier-Stokes equations
    Sheu, TWH
    Lin, RK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (03) : 297 - 312
  • [7] Certain aspects of applying Newton's method to the Navier-Stokes equations
    Bogovskii, M. E.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 351 - 355
  • [8] Preliminary verification of incompressible Navier-Stokes equations solved by The Newton method
    Guo J.
    Zhang S.
    Yang C.
    Wang J.
    Huang S.
    Wang K.
    International Journal of Advanced Nuclear Reactor Design and Technology, 2020, 2 : 69 - 85
  • [9] Preconditioning techniques for Newton's method for the incompressible Navier-Stokes equations
    Elman, HC
    Loghin, D
    Wathen, AJ
    BIT NUMERICAL MATHEMATICS, 2003, 43 (05) : 961 - 974
  • [10] Certain aspects of applying Newton’s method to the Navier-Stokes equations
    M. E. Bogovskii
    Doklady Mathematics, 2009, 79 : 351 - 355