A Quasi-Double-Layer Solid Electrolyte with Adjustable Interphases Enabling High-Voltage Solid-State Batteries

被引:70
|
作者
Pan, Jun [1 ]
Zhang, Yuchen [2 ]
Wang, Jian [3 ]
Bai, Zhongchao [4 ]
Cao, Ruiguo [2 ]
Wang, Nana [5 ]
Dou, Shixue [5 ]
Huang, Fuqiang [1 ,6 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Sci & Technol China, CAS, Key Lab Mat Energy Convers, Hefei Natl Lab Phys Sci Microscale,Dept Mat Sci &, Hefei 230026, Peoples R China
[3] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200050, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R China
[5] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovat Campus, North Wollongong, NSW 2500, Australia
[6] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
基金
澳大利亚研究理事会;
关键词
artificial cathode electrolyte interface; high redox stability; polymer solid-state lithium-ion batteries; quasi-double-layer solid electrolytes; stable interfacial contact; POLYMER ELECTROLYTE; LITHIUM; SUCCINONITRILE; GRAPHITE;
D O I
10.1002/adma.202107183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing the energy density and long-term cycling stability of lithium-ion batteries necessitates the stability of electrolytes under high/low voltage application and stable electrode/electrolyte interfacial contact. However, neither a single polymer nor liquid electrolyte can realize this due to their limited internal energy gap, which cannot avoid lithium-metal deposition and electrolyte oxidation simultaneously. Herein, a novel type of quasi-double-layer composite polymer electrolytes (QDL-CPEs) is proposed by using plasticizers with high oxidation stability (propylene carbonate) and high reduction stability (diethylene glycol dimethyl ether) in a poly(vinylidene fluoride) (PVDF)-based electrolyte composites. In-situ-polymerized propylene carbonate can function as a cathode electrolyte interface (CEI) film, which can enhance the antioxidant ability. The nucleophilic substitution reaction between diethylene glycol dimethyl ether and PVDF increases the reduction stability of the electrolyte on the anodic side, without the formation of lithium dendrites. The QDL-CPEs has high ionic conductivity, an enhanced electrochemical reaction window, adjustable electrode/electrolyte interphases, and no additional electrolyte-electrolyte interfacial resistance. Thus, this ingenious design of the QDL-CPEs improves the cycling performance of a fabricated LiNi0.8Co0.1Mn0.1O2 (NCM811)//QDL-CPEs//hard carbon full cell at room temperature, paving a new way for designing solid-state battery systems accessible for practical applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries
    Yang, Wujie
    Liu, Yiwen
    Sun, Xinyi
    He, Zhiying
    He, Ping
    Zhou, Haoshen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (18)
  • [32] Lithium difluorophosphate-modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Tan, Jiaxu
    Li, Xinhai
    Li, Qihou
    Wang, Zhixing
    Guo, Huajun
    Yan, Guochun
    Wang, Jiexi
    Li, Guangchao
    IONICS, 2022, 28 (07) : 3233 - 3241
  • [33] A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries
    Peiran Shi
    Jiabin Ma
    Ming Liu
    Shaoke Guo
    Yanfei Huang
    Shuwei Wang
    Lihan Zhang
    Likun Chen
    Ke Yang
    Xiaotong Liu
    Yuhang Li
    Xufei An
    Danfeng Zhang
    Xing Cheng
    Qidong Li
    Wei Lv
    Guiming Zhong
    Yan-Bing He
    Feiyu Kang
    Nature Nanotechnology, 2023, 18 : 602 - 610
  • [34] Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries
    Vattappara, Kevin
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    Urdampilleta, Idoia
    Kvasha, Andriy
    BATTERIES-BASEL, 2025, 11 (02):
  • [35] Bilayer solid electrolyte enabling quasi-solid-state lithium-metal batteries
    Wu, Fanglin
    Fang, Shan
    Kuenzel, Matthias
    Diemant, Thomas
    Kim, Jae-Kwang
    Bresser, Dominic
    Kim, Guk-Tae
    Passerini, Stefano
    JOURNAL OF POWER SOURCES, 2023, 557
  • [36] A LLZO Fibers/ PPO polymeric matrix solid electrolyte for high voltage solid-state lithium batteries
    Zhong, Liang
    Li, Jie
    Chen, Zhi-xiong
    Zhou, Li-ping
    Liu, Hai-xia
    Shen, Xiang-qian
    Jing, Mao-xiang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2024, 130 (09):
  • [37] Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes
    Hongli Xu
    Jingbing Xie
    Zhongbo Liu
    Jun Wang
    Yonghong Deng
    MRS Energy & Sustainability, 2020, 7
  • [38] Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: Solid polymer electrolytes
    Xu, Hongli
    Xie, Jingbing
    Liu, Zhongbo
    Wang, Jun
    Deng, Yonghong
    MRS ENERGY & SUSTAINABILITY, 2020, 7 (1)
  • [39] Recent fluorination strategies in solid electrolytes for high-voltage solid-state lithium-ion batteries
    Tang, An-Chun
    Hu, Er-Hai
    Jia, Bei-Er
    Wan, Chu-Bin
    Wen, Zi-Yue
    Tso, Shuen
    Ju, Xin
    Yan, Qing-Yu
    RARE METALS, 2025,
  • [40] A review of all-solid-state electrolytes for lithium batteries: high-voltage cathode materials, solid-state electrolytes and electrode-electrolyte interfaces
    Ma, Mingming
    Zhang, Menghui
    Jiang, Bitao
    Du, Yang
    Hu, Bingcheng
    Sun, Chengguo
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (07) : 1268 - 1297