Solvation-Tailored PVDF-Based Solid-State Electrolyte for High-Voltage Lithium Metal Batteries

被引:36
|
作者
Yang, Wujie [1 ,2 ]
Liu, Yiwen [1 ,2 ]
Sun, Xinyi [1 ,2 ]
He, Zhiying [1 ,2 ]
He, Ping [1 ,2 ]
Zhou, Haoshen [1 ,2 ]
机构
[1] Nanjing Univ, Coll Engn & Appl Sci, Dept Ctr Energy Storage Mat & Technol, Jiangsu Key Lab Artificial Funct Mat,Natl Lab Soli, Nanjing 210093, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
solid-state lithium metal batteries; composite electrolytes; solvation structure; PVDF; zeolite; LI-ION; POLYMER; CONDUCTIVITY; PERFORMANCE; STABILITY; MEMBRANE;
D O I
10.1002/anie.202401428
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(vinylidene fluoride) (PVDF)-based polymer electro-lytes are attracting increasing attention for high-voltage solid-state lithium metal batteries because of their high room temperature ionic conductivity, adequate mechanical strength and good thermal stability. However, the presence of highly reactive residual solvents, such as N, N-dimethylformamide (DMF), severely jeopardizes the long-term cycling stability. Herein, we propose a solvation-tailoring strategy to confine residual solvent molecules by introducing low-cost 3 angstrom zeolite molecular sieves as fillers. The strong interaction between DMF and the molecular sieve weakens the ability of DMF to participate in the solvation of Li+, leading to more anions being involved in solvation. Benefiting from the tailored anion-rich coordination environment, the interfacial side reactions with the lithium anode and high-voltage NCM811 cathode are effectively suppressed. As a result, the solid-state Li||Li symmetrical cells demonstrates ultra-stable cycling over 5100 h at 0.1 mA cm-2, and the Li||NCM811 full cells achieve excellent cycling stability for more than 1130 and 250 cycles under the charging cut-off voltages of 4.3 V and 4.5 V, respectively. Our work is an innovative exploration to address the negative effects of residual DMF in PVDF-based solid-state electrolytes and highlights the importance of modulating the solvation structures in solid-state polymer electrolytes. Residual DMF solvents in PVDF-based solid-state electrolytes suffered from inevitably serious side reactions with high-voltage NCM811 cathode and lithium metal anode which restrict the cycling performance of solid-state Li||NCM811 cells. We proposed a novel strategy of anchoring DMF solvents by incorporating low-cost 3 angstrom zeolite molecular sieves as fillers to modulate the solvation structures in PVDF-based solid state electrolyte. Inorganic-rich SEI and CEI derived from the tailored anion-rich solvated structure guarantee long-term cycling stability of the solid-state Li||NCM811 cell at high cut-off voltages of 4.3 V and 4.5 V. image
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Transparent PVDF-based electrolyte enabled by lipophilic lithium magnesium silicate for solid-state lithium batteries
    Yue Zhang
    Jun-Hong Li
    Man Ge
    Yun-Hui Huang
    Heng-Hui Xu
    Rare Metals, 2024, 43 (11) : 5625 - 5636
  • [2] Transparent PVDF-based electrolyte enabled by lipophilic lithium magnesium silicate for solid-state lithium batteries
    Zhang, Yue
    Li, Jun-Hong
    Ge, Man
    Huang, Yun-Hui
    Xu, Heng-Hui
    RARE METALS, 2024, 43 (11) : 5625 - 5636
  • [3] Combinatorial Printing of Functionally Graded Solid-State Electrolyte for High-Voltage Lithium Metal Batteries
    Jiang, Qiang
    Atampugre, Stephanie
    Du, Yipu
    Yang, Lingyu
    Schaefer, Jennifer L.
    Zhang, Yanliang
    ACS MATERIALS LETTERS, 2024, 6 (06): : 2205 - 2212
  • [4] Bilayer electrolyte design toward high-voltage durable solid-state lithium metal batteries
    Wang, Qiujun
    Wang, Yaqing
    Ma, Yanqiang
    Zhang, Di
    Li, Zhaojin
    Sun, Huilan
    Wang, Bo
    Zhou, Dong
    Fan, Li-Zhen
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (04) : 1214 - 1225
  • [5] Lithium difluorophosphate–modified PEO-based solid-state electrolyte for high-voltage lithium batteries
    Jiaxu Tan
    Xinhai Li
    Qihou Li
    Zhixing Wang
    Huajun Guo
    Guochun Yan
    Jiexi Wang
    Guangchao Li
    Ionics, 2022, 28 : 3233 - 3241
  • [6] A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries
    Shi, Peiran
    Ma, Jiabin
    Liu, Ming
    Guo, Shaoke
    Huang, Yanfei
    Wang, Shuwei
    Zhang, Lihan
    Chen, Likun
    Yang, Ke
    Liu, Xiaotong
    Li, Yuhang
    An, Xufei
    Zhang, Danfeng
    Cheng, Xing
    Li, Qidong
    Lv, Wei
    Zhong, Guiming
    He, Yan-Bing
    Kang, Feiyu
    NATURE NANOTECHNOLOGY, 2023, 18 (06) : 602 - +
  • [7] A dielectric electrolyte composite with high lithium-ion conductivity for high-voltage solid-state lithium metal batteries
    Peiran Shi
    Jiabin Ma
    Ming Liu
    Shaoke Guo
    Yanfei Huang
    Shuwei Wang
    Lihan Zhang
    Likun Chen
    Ke Yang
    Xiaotong Liu
    Yuhang Li
    Xufei An
    Danfeng Zhang
    Xing Cheng
    Qidong Li
    Wei Lv
    Guiming Zhong
    Yan-Bing He
    Feiyu Kang
    Nature Nanotechnology, 2023, 18 : 602 - 610
  • [8] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Wang, Qinglei
    Dong, Tiantian
    Zhou, Qian
    Cui, Zili
    Shangguan, Xuehui
    Lu, Chenglong
    Lv, Zhaolin
    Chen, Kai
    Huang, Lang
    Zhang, Huanrui
    Cui, Guanglei
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (05) : 934 - 942
  • [9] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China Chemistry, 2022, 65 : 934 - 942
  • [10] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China(Chemistry), 2022, 65 (05) : 934 - 942