Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries

被引:0
|
作者
Vattappara, Kevin [1 ,2 ,3 ,4 ]
Finsterbusch, Martin [5 ]
Fattakhova-Rohlfing, Dina [2 ,3 ,4 ,5 ]
Urdampilleta, Idoia [1 ]
Kvasha, Andriy [1 ,2 ]
机构
[1] CIDETEC, Basque Res & Technol Alliance BRTA, P Miramon 196, Donostia San Sebastian 20014, Spain
[2] ALISTORE European Res Inst, FR CNRS 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] Univ Duisburg Essen, Fac Engn, Lotharstr 1, D-47057 Duisburg, Germany
[4] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
[5] Forschungszentrum Julich, Inst Energy Mat & Devices IMD Mat Synth & Proc 2, Wilhelm Johnen Str, D-52428 Julich, Germany
来源
BATTERIES-BASEL | 2025年 / 11卷 / 02期
关键词
solid-state electrolyte; solid-state battery; ceramic-rich composite separator; high voltage; composite electrolyte; POLYMER ELECTROLYTE; LITHIUM BATTERIES; IONIC-CONDUCTIVITY; STABILITY; SUCCINONITRILE; PROGRESS; WINDOW;
D O I
10.3390/batteries11020042
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composite solid electrolytes are gaining interest regarding their use in Li-metal solid-state batteries. Although high ceramic content improves the electrochemical stability of ceramic-rich composite separators (C-SCE), the polymeric matrix also plays a vital role. In the first generation of C-SCE separators with a PEO-based matrix, the addition of 90-95 wt% of Li6.45Al0.05La3Zr1.6Ta0.4O12 (LLZO) does not make C-SCE stable for cell cycling with high-voltage (HV) cathodes. For the next iteration, the objective was to find an HV-stable polymeric matrix for C-SCEs. Herein, we report results on optimizing C-SCE separators with different ceramics and polymers which can craft the system towards better stability with NMC622-based composite cathodes. Both LLZO and Li1.3Al0.3Ti1.7(PO4)3 (LATP) were utilized as ceramic components in C-SCE separators. Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI) and poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) were used as polymers in the "polymer/LiTFSI/plasticizer"-based matrix. The initial phase of the selection criteria for the separator matrix involved assessing mechanical stability and ionic conductivity. Two optimized separator formulations were then tested for their electrochemical stability with both Li metal and HV composite cathodes. The results showed that Li/NMC622 cells with LP70_PVDF_HFP and LZ70_PDDA-TFSI separators exhibited more stable cycling performance compared to those with LZ90_PEO300k-based separators.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Stabilization of lithium anode with ceramic-rich interlayer for all solid-state batteries
    Delaporte, Nicolas
    Lajoie, Gilles
    Darwiche, Ali
    Vigeant, Marie-Josee
    Collin-Martin, Steve
    Clement, Daniel
    RSC ADVANCES, 2022, 12 (24) : 15493 - 15507
  • [2] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [3] Composite Separators with Very High Garnet Content for Solid-State Batteries
    Vattappara, Kevin
    Finsterbusch, Martin
    Fattakhova-Rohlfing, Dina
    Kvasha, Andriy
    CHEMELECTROCHEM, 2024, 11 (21):
  • [4] Across Interfacial Li+ Conduction Accelerated by a Single-Ion Conducting Polymer in Ceramic-Rich Composite Electrolytes for Solid-State Batteries
    Meng, Nan
    Lian, Fang
    Wu, Luetao
    Wang, Yue
    Qiu, Jingyi
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (31) : 41487 - 41494
  • [5] Dual-Anion-Rich Polymer Electrolytes for High-Voltage Solid-State Lithium Metal Batteries
    Zhang, Yangqian
    Liu, Han
    Liu, Fangyan
    Zhang, Shuoxiao
    Zhou, Mengyuan
    Liao, Yaqi
    Wei, Ying
    Dong, Weixia
    Li, Tianyi
    Liu, Chen
    Liu, Qi
    Xu, Henghui
    Sun, Gang
    Wang, Zhenbo
    Ren, Yang
    Yang, Jiayi
    ACS NANO, 2025, 19 (03) : 3197 - 3209
  • [6] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Wang, Qinglei
    Dong, Tiantian
    Zhou, Qian
    Cui, Zili
    Shangguan, Xuehui
    Lu, Chenglong
    Lv, Zhaolin
    Chen, Kai
    Huang, Lang
    Zhang, Huanrui
    Cui, Guanglei
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (05) : 934 - 942
  • [7] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China Chemistry, 2022, 65 : 934 - 942
  • [8] Composite electrolytes engineered by anion acceptors for boosted high-voltage solid-state lithium metal batteries
    Yu, Jiahui
    Huang, Kangsheng
    Xu, Hai
    Fang, Chang
    Zhang, Xiaogang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 642 : 330 - 339
  • [9] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China(Chemistry), 2022, (05) : 934 - 942
  • [10] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Qinglei Wang
    Tiantian Dong
    Qian Zhou
    Zili Cui
    Xuehui Shangguan
    Chenglong Lu
    Zhaolin Lv
    Kai Chen
    Lang Huang
    Huanrui Zhang
    Guanglei Cui
    Science China(Chemistry), 2022, 65 (05) : 934 - 942