Sieve extremum estimation of a semiparametric transformation model

被引:2
|
作者
Lin, Yingqian [1 ,2 ]
Tu, Yundong [1 ,2 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Extremum estimation; Hermite polynomials; Semiparametrics; Sieve method; Transformation; SINGLE-INDEX; REGRESSION;
D O I
10.1016/j.econlet.2020.109020
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the estimation of a semiparametric transformation model, A(y(t), beta(0))= g(x(t))+u(t), where Lambda(., beta(0)) is a strictly increasing function known up to an l-dimensional parameter beta(0), g is an unknown link function. Hermite polynomial expansion is used to approximate the link function g, which leads to an extreme estimator for beta(0) and a plug-in estimator for g. Asymptotic properties of the estimators are established. Simulation results demonstrate that the estimators perform well in finite samples. An example on Canadian occupation prestige is provided to illustrate the practical value of the proposed model. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条