Sieve extremum estimation of a semiparametric transformation model

被引:2
|
作者
Lin, Yingqian [1 ,2 ]
Tu, Yundong [1 ,2 ]
机构
[1] Peking Univ, Guanghua Sch Management, Beijing 100871, Peoples R China
[2] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Extremum estimation; Hermite polynomials; Semiparametrics; Sieve method; Transformation; SINGLE-INDEX; REGRESSION;
D O I
10.1016/j.econlet.2020.109020
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the estimation of a semiparametric transformation model, A(y(t), beta(0))= g(x(t))+u(t), where Lambda(., beta(0)) is a strictly increasing function known up to an l-dimensional parameter beta(0), g is an unknown link function. Hermite polynomial expansion is used to approximate the link function g, which leads to an extreme estimator for beta(0) and a plug-in estimator for g. Asymptotic properties of the estimators are established. Simulation results demonstrate that the estimators perform well in finite samples. An example on Canadian occupation prestige is provided to illustrate the practical value of the proposed model. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] NONPARAMETRIC ESTIMATION OF SEMIPARAMETRIC TRANSFORMATION MODELS
    Florens, Jean-Pierre
    Sokullu, Senay
    ECONOMETRIC THEORY, 2017, 33 (04) : 839 - 873
  • [22] Semiparametric estimation of a nonstationary panel data transformation model under symmetry
    Zhou, Yahong
    ECONOMICS LETTERS, 2008, 99 (01) : 107 - 110
  • [23] Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data
    Chen, Chyong-Mei
    Shen, Pao-Sheng
    LIFETIME DATA ANALYSIS, 2018, 24 (02) : 250 - 272
  • [24] Sieve M-estimation for semiparametric varying-coefficient partially linear regression model
    HU Tao 1
    2 School of Mathematical Sciences
    ScienceChina(Mathematics), 2010, 53 (08) : 1995 - 2010
  • [25] Sieve M-estimation for semiparametric varying-coefficient partially linear regression model
    Tao Hu
    HengJian Cui
    Science China Mathematics, 2010, 53 : 1995 - 2010
  • [26] Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data
    Chyong-Mei Chen
    Pao-Sheng Shen
    Lifetime Data Analysis, 2018, 24 : 250 - 272
  • [27] Estimation of a semiparametric transformation model: A novel approach based on least squares minimization
    Colling, Benjamin
    Van Keilegom, Ingrid
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (01): : 769 - 800
  • [28] Sieve estimation of semiparametric accelerated mean models with panel count data
    Hu, Xiangbin
    Su, Wen
    Zhao, Xingqiu
    ELECTRONIC JOURNAL OF STATISTICS, 2023, 17 (01): : 1316 - 1343
  • [29] The sparse estimation of the semiparametric linear transformation model with dependent current status data
    Luo, Lin
    Yu, Jinzhao
    Zhao, Hui
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (04) : 759 - 779
  • [30] Sieve estimation in semiparametric modeling of longitudinal data with informative observation times
    Zhao, Xingqiu
    Deng, Shirong
    Liu, Li
    Liu, Lei
    BIOSTATISTICS, 2014, 15 (01) : 140 - 153