The sparse estimation of the semiparametric linear transformation model with dependent current status data

被引:0
|
作者
Luo, Lin [1 ]
Yu, Jinzhao [2 ]
Zhao, Hui [2 ,3 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch ofStatist & Math, Wuhan, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
Broken adaptive ridge regression; current status data; dependent censoring; linear transformation model; variable selection; PROPORTIONAL HAZARDS MODEL; REGRESSION-ANALYSIS; VARIABLE SELECTION; ADAPTIVE LASSO; LIKELIHOOD;
D O I
10.1080/02664763.2022.2161488
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the sparse estimation under the semiparametric linear transformation models for the current status data, also called type I interval-censored data. For the problem, the failure time of interest may be dependent on the censoring time and the association parameter between them is left unspecified. To address this, we employ the copula model to describe the dependence between them and a two-stage estimation procedure to estimate both the association parameter and the regression parameter. In addition, we propose a penalized maximum likelihood estimation procedure based on the broken adaptive ridge regression, and Bernstein polynomials are used to approximate the nonparametric functions involved. The oracle property of the proposed method is established and the numerical studies suggest that the method works well for practical situations. Finally, the method is applied to an Alzheimer's disease study that motivated this investigation.
引用
收藏
页码:759 / 779
页数:21
相关论文
共 50 条
  • [1] Copula-based analysis of dependent current status data with semiparametric linear transformation model
    Yu, Huazhen
    Zhang, Rui
    Zhang, Lixin
    [J]. LIFETIME DATA ANALYSIS, 2024,
  • [2] Semiparametric linear transformation models for current status data
    Sun, JG
    Sun, LQ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2005, 33 (01): : 85 - 96
  • [3] Efficient estimation of semiparametric varying-coefficient partially linear transformation model with current status data
    Al-Mosawi, Riyadh
    Lu, Xuewen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (02) : 416 - 435
  • [4] Regression analysis of informative current status data with the semiparametric linear transformation model
    Xu, Da
    Zhao, Shishun
    Hu, Tao
    Yu, Mengzhu
    Sun, Jianguo
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (02) : 187 - 202
  • [5] On sparse estimation for semiparametric linear transformation models
    Zhang, Hao Helen
    Lu, Wenbin
    Wang, Hansheng
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (07) : 1594 - 1606
  • [6] Semiparametric additive transformation model under current status data
    Cheng, Guang
    Wang, Xiao
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 : 1735 - 1764
  • [7] Efficient Estimation for Linear Transformation Models with Current Status Data
    Zhang, Bin
    Tong, Xingwei
    Zhang, Jing
    Wang, Chunjie
    Sun, Jianguo
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3191 - 3203
  • [8] Efficient estimation of a linear transformation model for current status data via penalized splines
    Lu, Minggen
    Liu, Yan
    Li, Chin-Shang
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (01) : 3 - 14
  • [9] Semiparametric transformation models for current status data with informative censoring
    Chen, Chyong-Mei
    Lu, Tai-Fang C.
    Chen, Man-Hua
    Hsu, Chao-Min
    [J]. BIOMETRICAL JOURNAL, 2012, 54 (05) : 641 - 656
  • [10] Semiparametric estimation of a regression model with an unknown transformation of the dependent variable
    Horowitz, JL
    [J]. ECONOMETRICA, 1996, 64 (01) : 103 - 137