Efficient estimation of semiparametric varying-coefficient partially linear transformation model with current status data

被引:0
|
作者
Al-Mosawi, Riyadh [1 ]
Lu, Xuewen [2 ]
机构
[1] Univ Thi Qar, Dept Math, Thi Qar, Iraq
[2] Univ Calgary, Dept Math & Stat, Calgary, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
B-splines; current status data; efficient estimation; linear transformation model; varying coefficient; MAXIMUM-LIKELIHOOD-ESTIMATION; PROPORTIONAL HAZARDS MODEL; REGRESSION-MODEL;
D O I
10.1080/00949655.2021.1961772
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a varying-coefficient partially linear transformation model with current status data, which extends several semiparametric models for current status data in the literature. Sieve maximum likelihood estimation method is used to obtain an integrated estimate for both the parametric components and nonparametric components in the model, i.e. the linear regression coefficients, the varying-coefficient functions and the baseline survival function. Under some regularity conditions, the proposed parameter estimators are proved to be semiparametrically efficient and asymptotically normal, and the estimators for the nonparametric functions achieve the optimal rate of convergence. Simulation studies assure the theoretical results, and a real data is reanalysed using the proposed method and it yields new findings.
引用
收藏
页码:416 / 435
页数:20
相关论文
共 50 条