Efficient estimation of a varying-coefficient partially linear proportional hazards model with current status data

被引:2
|
作者
Yang, Jun-Qiang [1 ]
Dong, Yuan [2 ]
Singh, Radhey [3 ]
Dong, Cheng [4 ]
Lu, Xuewen [2 ]
机构
[1] Hunan Urban Construct Coll, Xiangtan, Hunan, Peoples R China
[2] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[3] Univ Guelph, Dept Math & Stat, Guelph, ON, Canada
[4] Univ Missouri, Dept Stat, Columbia, MO 65211 USA
基金
加拿大自然科学与工程研究理事会;
关键词
B-splines; counting process; empirical process; interval-censored data; monotonicity constraints; semiparametric efficiency bound; LIKELIHOOD-ESTIMATION; REGRESSION-MODELS;
D O I
10.1080/00949655.2019.1673391
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a varying-coefficient partially linear proportional hazards model with current status data. The proposed model enables one to examine the extent to which some covariates interact nonlinearly with an exposure variable, while other covariates present linear effects. B-splines are applied to model both the unknown cumulative baseline hazard function and the varying-coefficient functions with and without monotone constraints, depending on the nature of the nonparametric functions. The sieve maximum likelihood estimation method is used to get an integrated estimate for the linear coefficients, the varying-coefficient functions and the cumulative baseline hazard function. The proposed parameter estimators are proved to be semiparametrically efficient and asymptotically normal, and the estimators for the nonparametric functions achieve the optimal rate of convergence. Simulation studies and a real data analysis are used for assessment and illustration.
引用
收藏
页码:90 / 111
页数:22
相关论文
共 50 条