The sparse estimation of the semiparametric linear transformation model with dependent current status data

被引:0
|
作者
Luo, Lin [1 ]
Yu, Jinzhao [2 ]
Zhao, Hui [2 ,3 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou, Peoples R China
[2] Zhongnan Univ Econ & Law, Sch ofStatist & Math, Wuhan, Peoples R China
[3] Zhongnan Univ Econ & Law, Sch Stat & Math, Wuhan 430073, Peoples R China
基金
中国国家自然科学基金;
关键词
Broken adaptive ridge regression; current status data; dependent censoring; linear transformation model; variable selection; PROPORTIONAL HAZARDS MODEL; REGRESSION-ANALYSIS; VARIABLE SELECTION; ADAPTIVE LASSO; LIKELIHOOD;
D O I
10.1080/02664763.2022.2161488
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the sparse estimation under the semiparametric linear transformation models for the current status data, also called type I interval-censored data. For the problem, the failure time of interest may be dependent on the censoring time and the association parameter between them is left unspecified. To address this, we employ the copula model to describe the dependence between them and a two-stage estimation procedure to estimate both the association parameter and the regression parameter. In addition, we propose a penalized maximum likelihood estimation procedure based on the broken adaptive ridge regression, and Bernstein polynomials are used to approximate the nonparametric functions involved. The oracle property of the proposed method is established and the numerical studies suggest that the method works well for practical situations. Finally, the method is applied to an Alzheimer's disease study that motivated this investigation.
引用
下载
收藏
页码:759 / 779
页数:21
相关论文
共 50 条
  • [41] Semiparametric regression of clustered current status data
    Feng, Yanqin
    Lin, Shurong
    Li, Yang
    JOURNAL OF APPLIED STATISTICS, 2019, 46 (10) : 1724 - 1737
  • [42] Estimation of regression parameters in a semiparametric transformation model
    Wang, N.
    Ruppert, D.
    Journal of Statistical Planning and Inference, 52 (03):
  • [43] Nonparametric estimation of current status data with dependent censoring
    Wang, Chunjie
    Sun, Jianguo
    Sun, Liuquan
    Zhou, Jie
    Wang, Dehui
    LIFETIME DATA ANALYSIS, 2012, 18 (04) : 434 - 445
  • [44] Sieve extremum estimation of a semiparametric transformation model
    Lin, Yingqian
    Tu, Yundong
    ECONOMICS LETTERS, 2020, 189
  • [45] Nonparametric estimation of current status data with dependent censoring
    Chunjie Wang
    Jianguo Sun
    Liuquan Sun
    Jie Zhou
    Dehui Wang
    Lifetime Data Analysis, 2012, 18 : 434 - 445
  • [46] Estimation of the additive hazards model with linear inequality restrictions based on current status data
    Feng, Yanqin
    Sun, Jianguo
    Sun, Lingli
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 68 - 81
  • [47] Profile local linear estimation of generalized semiparametric regression model for longitudinal data
    Yanqing Sun
    Liuquan Sun
    Jie Zhou
    Lifetime Data Analysis, 2013, 19 : 317 - 349
  • [48] Estimation of Semiparametric Model with Censored Data
    Chen Zhongwei
    Lu Yiqiang
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 2639 - 2643
  • [49] Moment estimation in a semiparametric generalized linear model
    Wang, Xueqin
    Peng, Hanxiang
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1624 - 1633
  • [50] Profile local linear estimation of generalized semiparametric regression model for longitudinal data
    Sun, Yanqing
    Sun, Liuquan
    Zhou, Jie
    LIFETIME DATA ANALYSIS, 2013, 19 (03) : 317 - 349