Estimation of a semiparametric multiplicative density model

被引:0
|
作者
Young Kyung Lee
机构
[1] Kangwon National University,
关键词
62G07; 62G20; Semiparametric models; In-sample density forecasting; Backfitting; Newton—Kantorovich Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses the estimation of a semiparametric structured density model that is very useful in forecasting the density on a region where the data are not observed. The model has many applications in actuarial science and mortality forecasting. It has a multiplicative structure with both parametric and nonparametric components that can be estimated based on the data at hand. The problem of estimating the parametric component is nonstandard since the information about the parametric component can be gathered through the derivative of the nonparametric components that are hard to estimate. We propose a simple procedure of estimating the parametric component, which may be used to construct estimators of the nonparametric components. We show that our estimator is consistent with a certain rate and also that it works quite well for finite sample sizes.
引用
收藏
页码:647 / 653
页数:6
相关论文
共 50 条
  • [1] Estimation of a semiparametric multiplicative density model
    Lee, Young Kyung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (04) : 647 - 653
  • [2] Semiparametric estimation in the generalized additive-multiplicative model
    Bagdonavičius V.
    Nikulin M.
    [J]. Journal of Mathematical Sciences, 2000, 99 (2) : 1017 - 1030
  • [3] Estimation of the error density in a semiparametric transformation model
    Colling, Benjamin
    Heuchenne, Cedric
    Samb, Rawane
    Van Keilegom, Ingrid
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2015, 67 (01) : 1 - 18
  • [4] Estimation of the error density in a semiparametric transformation model
    Benjamin Colling
    Cédric Heuchenne
    Rawane Samb
    Ingrid Van Keilegom
    [J]. Annals of the Institute of Statistical Mathematics, 2015, 67 : 1 - 18
  • [5] Shrinkage estimation of semiparametric multiplicative error models
    Brownlees, Christian T.
    Gallo, Giampiero M.
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (02) : 365 - 378
  • [6] Semiparametric estimation of treatment effect with density ratio model
    Lin, Cunjie
    Wei, Wenhua
    Zhou, Yong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (14) : 3338 - 3359
  • [7] Maximum Likelihood Estimation for Semiparametric Density Ratio Model
    Diao, Guoqing
    Ning, Jing
    Qin, Jing
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2012, 8 (01):
  • [8] Penalized semiparametric density estimation
    Yang, Ying
    [J]. STATISTICS AND COMPUTING, 2009, 19 (04) : 355 - 366
  • [9] Penalized semiparametric density estimation
    Ying Yang
    [J]. Statistics and Computing, 2009, 19
  • [10] Semiparametric counterfactual density estimation
    Kennedy, E. H.
    Balakrishnan, S.
    Wasserman, L. A.
    [J]. BIOMETRIKA, 2023, 110 (04) : 875 - 896