The variety of Lie bialgebras

被引:0
|
作者
Ciccoli, N [1 ]
Guerra, L [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat, I-06123 Perugia, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a Lie bialgebra cohomology as the total cohomology of a double complex constructed from a Lie algebra and its dual, we show that its 2-cocycles classify Lie bialgebra formal deformations and we prove the usual cohomological condition (i. e. H-2 = 0) for formal rigidity. Lastly we describe the results of explicit computations in low-dimensional cases.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [21] Polydifferential Lie bialgebras and graph complexesPolydifferential Lie bialgebras and graph complexesV. Wolff
    Vincent Wolff
    Letters in Mathematical Physics, 115 (2)
  • [22] Lie bialgebras arising from alternative and Jordan bialgebras
    Goncharov, M. E.
    SIBERIAN MATHEMATICAL JOURNAL, 2010, 51 (02) : 215 - 228
  • [23] On Lie 2-bialgebras
    Qiao Yu
    Zhao Jia
    CommunicationsinMathematicalResearch, 2018, 34 (01) : 54 - 64
  • [24] 3-LIE BIALGEBRAS
    白瑞蒲
    程宇
    李佳倩
    孟伟
    Acta Mathematica Scientia, 2014, 34 (02) : 513 - 522
  • [25] Braided-Lie bialgebras
    Majid, S
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (02) : 329 - 356
  • [26] On Quantization Functors of Lie Bialgebras
    B. Enriquez
    Acta Applicandae Mathematica, 2002, 73 : 133 - 140
  • [27] Quantization of Lie bialgebras revisited
    Pavol Ševera
    Selecta Mathematica, 2016, 22 : 1563 - 1581
  • [28] On Quantizable Odd Lie Bialgebras
    Anton Khoroshkin
    Sergei Merkulov
    Thomas Willwacher
    Letters in Mathematical Physics, 2016, 106 : 1199 - 1215
  • [29] n-Lie bialgebras
    Bai, Ruipu
    Guo, Weiwei
    Lin, Lixin
    Zhang, Yan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02): : 382 - 397
  • [30] Hamiltonian type lie bialgebras
    Xin, Bin
    Song, Guang-ai
    Su, Yu-cai
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (09): : 1267 - 1279