The variety of Lie bialgebras

被引:0
|
作者
Ciccoli, N [1 ]
Guerra, L [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat, I-06123 Perugia, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define a Lie bialgebra cohomology as the total cohomology of a double complex constructed from a Lie algebra and its dual, we show that its 2-cocycles classify Lie bialgebra formal deformations and we prove the usual cohomological condition (i. e. H-2 = 0) for formal rigidity. Lastly we describe the results of explicit computations in low-dimensional cases.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [31] Lie 2-Bialgebras
    Chengming Bai
    Yunhe Sheng
    Chenchang Zhu
    Communications in Mathematical Physics, 2013, 320 : 149 - 172
  • [32] On Quantizable Odd Lie Bialgebras
    Khoroshkin, Anton
    Merkulov, Sergei
    Willwacher, Thomas
    LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (09) : 1199 - 1215
  • [33] Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras and Rota-Baxter Lie Bialgebras
    Lang, Honglei
    Sheng, Yunhe
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 397 (02) : 763 - 791
  • [34] Quantization of Lie bialgebras revisited
    Severa, Pavol
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1563 - 1581
  • [35] On simple real Lie bialgebras
    Andruskiewitsch, N
    Jancsa, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (03) : 139 - 158
  • [36] On the associative analog of Lie bialgebras
    Aguiar, M
    JOURNAL OF ALGEBRA, 2001, 244 (02) : 492 - 532
  • [37] Hamiltonian type Lie bialgebras
    Bin Xin
    Guang-ai Song
    Yu-cai Su
    Science in China Series A: Mathematics, 2007, 50 : 1267 - 1279
  • [38] LIE BIALGEBRAS MODULES AND COHOMOLOGY
    LECOMTE, PBA
    ROGER, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (06): : 405 - 410
  • [39] Extending Structures for Lie Bialgebras
    Hong, Yanyong
    JOURNAL OF LIE THEORY, 2023, 33 (03) : 783 - 798
  • [40] Quantization of inhomogeneous Lie bialgebras
    Kulish, PP
    Mudrov, AI
    JOURNAL OF GEOMETRY AND PHYSICS, 2002, 42 (1-2) : 64 - 77