Attention-based Selection Strategy for Weakly Supervised Object Localization

被引:5
|
作者
Zhang, Zhenfei [1 ]
Bui, Tien D. [1 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
来源
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2021年
关键词
weakly supervised object localization; attention-based selection strategy;
D O I
10.1109/ICPR48806.2021.9412173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly Supervised Object Localization (WSOL) task aims to recognize the object position by using only image-level labels. Some previous techniques remove the most discriminative parts for all input images or random images to capture the entire object location. However, these methods can not perform the correct operation on different images such as hiding the data or feature maps that should not be hidden. In this case, both classification and localization accuracy will be affected. Meanwhile, just erasing the most important regions tends to make the model learn the less discriminative parts from outside of the objects. To address these limitations, we propose an Attention-based Selection Strategy (ASS) method to choose images that do need to be erased. Moreover, we use different threshold self-attention maps to reduce the impact of unhelpful information in one of the branches of our selection strategy. Based on our experiments, the proposed method is simple but effective to improve the performance of WSOL. In particular, ASS achieves new state-of-the-art accuracy on CUB-200-2011 dataset and works very well on ILSVRC 2016 dataset.
引用
收藏
页码:10305 / 10311
页数:7
相关论文
共 50 条
  • [31] Adversarial Transformers for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Zhang, Zhe
    Zhang, Yongdong
    Wu, Feng
    IEEE Transactions on Image Processing, 2022, 31 : 7130 - 7143
  • [32] SALIENCY AWARE: WEAKLY SUPERVISED OBJECT LOCALIZATION
    Chen, Yun-Chun
    Hsu, Winston H.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1907 - 1911
  • [33] Weakly Supervised Object Localization and Detection: A Survey
    Zhang, Dingwen
    Han, Junwei
    Cheng, Gong
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5866 - 5885
  • [34] Entropy regularization for weakly supervised object localization
    Hwang, Dongjun
    Ha, Jung-Woo
    Shim, Hyunjung
    Choe, Junsuk
    PATTERN RECOGNITION LETTERS, 2023, 169 : 1 - 7
  • [35] Normalization Matters in Weakly Supervised Object Localization
    Kim, Jeesoo
    Choe, Junsuk
    Yun, Sangdoo
    Kwak, Nojun
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3407 - 3416
  • [36] Feature Fusion for Weakly Supervised Object Localization
    Tang, Xu
    Song, Yonghong
    Zhang, Yuanlin
    2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 2548 - 2553
  • [37] Convolutional STN for Weakly Supervised Object Localization
    Meethal, Akhil
    Pedersoli, Marco
    Belharbi, Soufiane
    Granger, Eric
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10157 - 10164
  • [38] TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization
    Yao, Yuan
    Wan, Fang
    Gao, Wei
    Pan, Xingjia
    Peng, Zhiliang
    Tian, Qi
    Ye, Qixiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9109 - 9121
  • [39] TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization
    Gao, Wei
    Wan, Fang
    Pan, Xingjia
    Peng, Zhiliang
    Tian, Qi
    Han, Zhenjun
    Zhou, Bolei
    Ye, Qixiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2866 - 2875
  • [40] Foreground Activation Maps for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Tian, Qi
    Zhang, Yongdong
    Wu, Feng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3365 - 3375