Convolutional STN for Weakly Supervised Object Localization

被引:2
|
作者
Meethal, Akhil [1 ]
Pedersoli, Marco [1 ]
Belharbi, Soufiane [1 ]
Granger, Eric [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Dept Syst Engn, Lab Imaging Vis & Artificial Intelligence LIVIA, Montreal, PQ, Canada
关键词
D O I
10.1109/ICPR48806.2021.9412029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised object localization is a challenging task in which the object of interest should be localized while learning its appearance. State-of-the-art methods recycle the architecture of a standard CNN by using the activation maps of the last layer for localizing the object. While this approach is simple and works relatively well, object localization relies on different features than classification, thus, a specialized localization mechanism is required during training to improve performance. In this paper, we propose a convolutional, multi-scale spatial localization network that provides accurate localization for the object of interest. Experimental results on CUB-200-2011 and ImageNet datasets show that our proposed approach provides competitive performance for weakly supervised localization.
引用
收藏
页码:10157 / 10164
页数:8
相关论文
共 50 条
  • [1] Rethinking the Localization in Weakly Supervised Object Localization
    Xu, Rui
    Luo, Yong
    Hu, Han
    Du, Bo
    Shen, Jialie
    Wen, Yonggang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5484 - 5494
  • [2] Is object localization for free? Weakly-supervised learning with convolutional neural networks
    Oquab, Maxime
    Bottou, Leon
    Laptev, Ivan
    Sivic, Josef
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 685 - 694
  • [3] Generalized Weakly Supervised Object Localization
    Zhang, Dingwen
    Guo, Guangyu
    Zeng, Wenyuan
    Li, Lei
    Han, Junwei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5395 - 5406
  • [4] Weakly supervised object localization and segmentation in videos
    Rochan, Mrigank
    Rahman, Shafin
    Bruce, Neil D. B.
    Wang, Yang
    IMAGE AND VISION COMPUTING, 2016, 56 : 1 - 12
  • [5] Weakly Supervised Object Localization as Domain Adaption
    Zhu, Lei
    She, Qi
    Chen, Qian
    You, Yunfei
    Wang, Boyu
    Lu, Yanye
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14617 - 14626
  • [6] Weakly Supervised Object Localization with Stable Segmentations
    Galleguillos, Carolina
    Babenko, Boris
    Rabinovich, Andrew
    Belongie, Serge
    COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 : 193 - 207
  • [7] Adversarial Transformers for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Zhang, Zhe
    Zhang, Yongdong
    Wu, Feng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 7130 - 7143
  • [8] Adversarial Transformers for Weakly Supervised Object Localization
    Meng, Meng
    Zhang, Tianzhu
    Zhang, Zhe
    Zhang, Yongdong
    Wu, Feng
    IEEE Transactions on Image Processing, 2022, 31 : 7130 - 7143
  • [9] Weakly Supervised Object Localization and Detection: A Survey
    Zhang, Dingwen
    Han, Junwei
    Cheng, Gong
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (09) : 5866 - 5885
  • [10] SALIENCY AWARE: WEAKLY SUPERVISED OBJECT LOCALIZATION
    Chen, Yun-Chun
    Hsu, Winston H.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 1907 - 1911