Attention-based Selection Strategy for Weakly Supervised Object Localization

被引:5
|
作者
Zhang, Zhenfei [1 ]
Bui, Tien D. [1 ]
机构
[1] Concordia Univ, Dept Comp Sci & Software Engn, Montreal, PQ, Canada
关键词
weakly supervised object localization; attention-based selection strategy;
D O I
10.1109/ICPR48806.2021.9412173
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly Supervised Object Localization (WSOL) task aims to recognize the object position by using only image-level labels. Some previous techniques remove the most discriminative parts for all input images or random images to capture the entire object location. However, these methods can not perform the correct operation on different images such as hiding the data or feature maps that should not be hidden. In this case, both classification and localization accuracy will be affected. Meanwhile, just erasing the most important regions tends to make the model learn the less discriminative parts from outside of the objects. To address these limitations, we propose an Attention-based Selection Strategy (ASS) method to choose images that do need to be erased. Moreover, we use different threshold self-attention maps to reduce the impact of unhelpful information in one of the branches of our selection strategy. Based on our experiments, the proposed method is simple but effective to improve the performance of WSOL. In particular, ASS achieves new state-of-the-art accuracy on CUB-200-2011 dataset and works very well on ILSVRC 2016 dataset.
引用
收藏
页码:10305 / 10311
页数:7
相关论文
共 50 条
  • [41] Weakly Supervised Object Localization with Latent Category Learning
    Wang, Chong
    Ren, Weiqiang
    Huang, Kaiqi
    Tan, Tieniu
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 431 - 445
  • [42] Token Masking Transformer for Weakly Supervised Object Localization
    Xu, Wenhao
    Wang, Changwei
    Xu, Rongtao
    Xu, Shibiao
    Meng, Weiliang
    Zhang, Man
    Zhang, Xiaopeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 2059 - 2069
  • [43] Evaluating Weakly Supervised Object Localization Methods Right
    Choe, Junsuk
    Oh, Seong Joon
    Lee, Seungho
    Chun, Sanghyuk
    Akata, Zeynep
    Shim, Hyunjung
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3130 - 3139
  • [44] Progressive Representation Adaptation for Weakly Supervised Object Localization
    Li, Dong
    Huang, Jia-Bin
    Li, Yali
    Wang, Shengjin
    Yang, Ming-Hsuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (06) : 1424 - 1438
  • [45] Feature disparity learning for weakly supervised object localization
    Li, Bingfeng
    Ruan, Haohao
    Li, Xinwei
    Wang, Keping
    IMAGE AND VISION COMPUTING, 2024, 145
  • [46] Weakly Supervised Object Localization Using Size Estimates
    Shi, Miaojing
    Ferrari, Vittorio
    COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 105 - 121
  • [47] DANet: Divergent Activation for Weakly Supervised Object Localization
    Xue, Haolan
    Liu, Chang
    Wan, Fang
    Jiao, Jianbin
    Ji, Xiangyang
    Ye, Qixiang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6588 - 6597
  • [48] ViTOL: Vision Transformer for Weakly Supervised Object Localization
    Gupta, Saurav
    Lakhotia, Sourav
    Rawat, Abhay
    Tallamraju, Rahul
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4100 - 4109
  • [49] Shallow Feature Matters for Weakly Supervised Object Localization
    Wei, Jun
    Wang, Qin
    Li, Zhen
    Wang, Sheng
    Zhou, S. Kevin
    Cui, Shuguang
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5989 - 5997
  • [50] Hierarchical complementary learning for weakly supervised object localization
    Benassou, Sabrina Narimene
    Shi, Wuzhen
    Jiang, Feng
    Benzine, Abdallah
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 100