On a time fractional reaction diffusion equation

被引:30
|
作者
Ahmad, B. [1 ]
Alhothuali, M. S. [1 ]
Alsulami, H. H. [1 ]
Kirane, M. [2 ]
Timoshin, S. [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Math Images & Applicat, Pole Sci & Technol, F-17031 La Rochelle, France
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
Reaction-diffusion equation; Caputo fractional derivative; Global existence; Blow-up;
D O I
10.1016/j.amc.2014.06.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 50 条
  • [1] Solutions of the Fractional Reaction Equation and the Fractional Diffusion Equation
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    PROCEEDINGS OF THE THIRD UN/ESA/NASA WORKSHOP ON THE INTERNATIONAL HELIOPHYSICAL YEAR 2007 AND BASIC SPACE SCIENCE: NATIONAL ASTRONOMICAL OBSERVATORY OF JAPAN, 2010, : 53 - 62
  • [2] On a fractional reaction–diffusion equation
    Bruno de Andrade
    Arlúcio Viana
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [3] On a fractional reaction-diffusion equation
    de Andrade, Bruno
    Viana, Arlucio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03):
  • [4] Fractional reaction-diffusion equation
    Seki, K
    Wojcik, M
    Tachiya, M
    JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (04): : 2165 - 2170
  • [5] A class of efficient difference method for time fractional reaction–diffusion equation
    Junxia Zhang
    Xiaozhong Yang
    Computational and Applied Mathematics, 2018, 37 : 4376 - 4396
  • [6] NUMERICAL APPROACH TO THE TIME-FRACTIONAL REACTION-DIFFUSION EQUATION
    Qiu, Yu-Yang
    THERMAL SCIENCE, 2019, 23 (04): : 2245 - 2251
  • [7] A Domain Decomposition Method for Time Fractional Reaction-Diffusion Equation
    Gong, Chunye
    Bao, Weimin
    Tang, Guojian
    Jiang, Yuewen
    Liu, Jie
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [8] Numerical approximations for the nonlinear time fractional reaction-diffusion equation
    Liu, Haiyu
    Lu, Shujuan
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (02) : 1355 - 1375
  • [9] BOUNDARY FEEDBACK STABILIZATION FOR AN UNSTABLE TIME FRACTIONAL REACTION DIFFUSION EQUATION
    Zhou, Hua-Cheng
    Guo, Bao-Zhu
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 75 - 101
  • [10] Numerical Methods for the Time Fractional Convection-Diffusion-Reaction Equation
    Li, Changpin
    Wang, Zhen
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (10) : 1115 - 1153