On a time fractional reaction diffusion equation

被引:30
|
作者
Ahmad, B. [1 ]
Alhothuali, M. S. [1 ]
Alsulami, H. H. [1 ]
Kirane, M. [2 ]
Timoshin, S. [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Math Images & Applicat, Pole Sci & Technol, F-17031 La Rochelle, France
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
Reaction-diffusion equation; Caputo fractional derivative; Global existence; Blow-up;
D O I
10.1016/j.amc.2014.06.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 50 条
  • [21] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [22] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [23] A Numerical Method for Time Fractional Diffusion Equation
    Song, Guangzhen
    Zhao, Weijia
    Huang, Jianfei
    PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON MACHINERY, MATERIALS AND COMPUTING TECHNOLOGY, 2016, 60 : 877 - 881
  • [24] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [25] Multi-time fractional diffusion equation
    Pskhu, A. V.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1939 - 1950
  • [26] Numerical methods for the time fractional diffusion equation
    Guo, Chong
    Zhao, Fengqun
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [27] Multi-time fractional diffusion equation
    A. V. Pskhu
    The European Physical Journal Special Topics, 2013, 222 : 1939 - 1950
  • [28] Analytical Solution of the Space-Time Fractional Reaction–Diffusion Equation with Variable Coefficients
    E. I. Mahmoud
    Journal of Mathematical Sciences, 2024, 285 (4) : 505 - 519
  • [29] Numerical Solution of the Time Fractional Reaction-advection-diffusion Equation in Porous Media
    Pandey, Prashant
    Kumar, Sachin
    Gomez-Aguilar, J. F.
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (01): : 84 - 96
  • [30] Analytical and numerical solutions of time and space fractional advection-diffusion-reaction equation
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 89 - 101