On a time fractional reaction diffusion equation

被引:30
|
作者
Ahmad, B. [1 ]
Alhothuali, M. S. [1 ]
Alsulami, H. H. [1 ]
Kirane, M. [2 ]
Timoshin, S. [3 ]
机构
[1] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 21589, Saudi Arabia
[2] Univ La Rochelle, Lab Math Images & Applicat, Pole Sci & Technol, F-17031 La Rochelle, France
[3] UCL, Dept Math, London WC1E 6BT, England
关键词
Reaction-diffusion equation; Caputo fractional derivative; Global existence; Blow-up;
D O I
10.1016/j.amc.2014.06.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:199 / 204
页数:6
相关论文
共 50 条
  • [41] A Study on Fractional Diffusion-Wave Equation with a Reaction
    Abuomar, Mohammed M. A.
    Syam, Muhammed, I
    Azmi, Amirah
    SYMMETRY-BASEL, 2022, 14 (08):
  • [42] ON THE FRACTIONAL DIFFUSION-ADVECTION-REACTION EQUATION IN R
    Ginting, Victor
    Li, Yulong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (04) : 1039 - 1062
  • [43] Problem of Determining the Reaction Coefficient in a Fractional Diffusion Equation
    Durdiev, U. D.
    DIFFERENTIAL EQUATIONS, 2021, 57 (09) : 1195 - 1204
  • [44] Dynamics of a Stochastic Fractional Reaction-Diffusion Equation
    Liu, Linfang
    Fu, Xianlong
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (01): : 95 - 124
  • [45] Recovery of advection coefficient and fractional order in a time-fractional reaction-advection-diffusion-wave equation
    Zhang, Yun
    Wei, Ting
    Yan, Xiongbin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 411
  • [47] Partially explicit time discretization for time fractional diffusion equation
    Hu, Jiuhua
    Alikhanov, Anatoly
    Efendiev, Yalchin
    Leung, Wing Tat
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (05) : 1908 - 1924
  • [48] An Efficient Space–Time Method for Time Fractional Diffusion Equation
    Jie Shen
    Chang-Tao Sheng
    Journal of Scientific Computing, 2019, 81 : 1088 - 1110
  • [49] Partially explicit time discretization for time fractional diffusion equation
    Jiuhua Hu
    Anatoly Alikhanov
    Yalchin Efendiev
    Wing Tat Leung
    Fractional Calculus and Applied Analysis, 2022, 25 : 1908 - 1924
  • [50] Fractional calculus in statistical physics: the case of time fractional diffusion equation
    Paradisi, Paolo
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2015, 6 (02):