Runway foreign object detection using RGB

被引:0
|
作者
Chen, W. [1 ]
机构
[1] China Acad Civil Aviat Sci & Technol, Airport Res Inst, Beijing, Peoples R China
来源
AERONAUTICAL JOURNAL | 2015年 / 119卷 / 1212期
基金
中国国家自然科学基金;
关键词
Background model - Background subtraction - Clutter suppression - Detection probabilities - Detection scheme - Foreign object debris - Innovative techniques - Segmentation map;
D O I
10.1017/S0001924000010356
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents an improved algorithm for foreign object debris (FOD) detection on the runway with several innovative techniques. The detection scheme incorporates four steps of geometric adjustment, background subtraction, clutter suppression and camouflage elimination. After geometric adjustment, the background model is built for each pixel with a set of RGB colour values taken in the past at the same location or in the neighborhood in the step of background subtraction. The background model samples are substituted randomly with an unfixed update period. Furthermore, the steps of clutter suppression and camouflage elimination are added to modify the segmentation map after background subtraction in order to increase the detection probability and decrease the false alarm rate. The overall algorithm is applied to the test data and real data on the runway. The results show that the RGB-based algorithm performs better than the classical gray-based techniques.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 50 条
  • [41] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476
  • [42] Moving Object Detection Using Adaptive Blind Update and RGB-D Camera
    Dorudian, Navid
    Lauria, Stanislao
    Swift, Stephen
    IEEE SENSORS JOURNAL, 2019, 19 (18) : 8191 - 8201
  • [43] RGB-D Object Recognition and Grasp Detection Using Hierarchical Cascaded Forests
    Asif, Umar
    Bennamoun, Mohammed
    Sohel, Ferdous A.
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (03) : 547 - 564
  • [44] Evaluation of Small Bolt and Nut Detection Performance Using Airport Runway Foreign Object Debris Detection System Based on a 96-GHz Millimeter-Wave Radar System
    Futatsumori, Shunichi
    Hiraga, Noriaki
    Yonemoto, Naruto
    Shibagaki, Nobuhiko
    Sato, Yosuke
    Kashima, Kenichi
    2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [45] Saliency Prototype for RGB-D and RGB-T Salient Object Detection
    Zhang, Zihao
    Wang, Jie
    Han, Yahong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3696 - 3705
  • [46] Divide and conquer object detection (DACOD) method for runway detection in remote sensing images
    Korez, Atakan
    INTERNATIONAL JOURNAL OF ENGINEERING AND GEOSCIENCES, 2022, 7 (02): : 154 - 160
  • [47] Moving Object Detection on RGB-D Videos Using Graph Regularized Spatiotemporal RPCA
    Javed, Sajid
    Bouwmans, Thierry
    Sultana, Maryam
    Jung, Soon Ki
    NEW TRENDS IN IMAGE ANALYSIS AND PROCESSING - ICIAP 2017, 2017, 10590 : 230 - 241
  • [48] DVSOD: RGB-D Video Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Wang, Size
    Li, Wenbo
    Cheng, Li
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [49] Study on moving object detection based on RGB color model
    Liu, Chun-Yang
    Hou, Dao-Zheng
    Chang-An, Liu
    1600, Trans Tech Publications Ltd, Kreuzstrasse 10, Zurich-Durnten, CH-8635, Switzerland (710): : 700 - 703
  • [50] Enhanced Thermal-RGB Fusion for Robust Object Detection
    El Ahmar, Wassim
    Massoud, Yahya
    Kolhatkar, Dhanvin
    AlGhamdi, Hamzah
    Alja'afreh, Mohammad
    Hammoud, Riad
    Laganiere, Robert
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW, 2023, : 365 - 374