Runway foreign object detection using RGB

被引:0
|
作者
Chen, W. [1 ]
机构
[1] China Acad Civil Aviat Sci & Technol, Airport Res Inst, Beijing, Peoples R China
来源
AERONAUTICAL JOURNAL | 2015年 / 119卷 / 1212期
基金
中国国家自然科学基金;
关键词
Background model - Background subtraction - Clutter suppression - Detection probabilities - Detection scheme - Foreign object debris - Innovative techniques - Segmentation map;
D O I
10.1017/S0001924000010356
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This paper presents an improved algorithm for foreign object debris (FOD) detection on the runway with several innovative techniques. The detection scheme incorporates four steps of geometric adjustment, background subtraction, clutter suppression and camouflage elimination. After geometric adjustment, the background model is built for each pixel with a set of RGB colour values taken in the past at the same location or in the neighborhood in the step of background subtraction. The background model samples are substituted randomly with an unfixed update period. Furthermore, the steps of clutter suppression and camouflage elimination are added to modify the segmentation map after background subtraction in order to increase the detection probability and decrease the false alarm rate. The overall algorithm is applied to the test data and real data on the runway. The results show that the RGB-based algorithm performs better than the classical gray-based techniques.
引用
收藏
页码:229 / 243
页数:15
相关论文
共 50 条
  • [31] RGB-D Salient Object Detection Using Saliency and Edge Reverse Attention
    Ikeda, Tomoki
    Ikehara, Masaaki
    IEEE ACCESS, 2023, 11 : 68818 - 68825
  • [32] Multimodal Convolutional Neural Network for Object Detection Using RGB-D Images
    Mocanu, Irina
    Clapon, Cosmin
    2018 41ST INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2018, : 307 - 310
  • [33] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [34] Unsupervised object detection via LWIR/RGB translation
    Abbott, Rachael
    Robertson, Neil M.
    del Rincon, Jesus Martinez
    Connor, Barry
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 407 - 415
  • [35] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [36] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [37] A new benchmark for camouflaged object detection: RGB-D camouflaged object detection dataset
    Zhang, Dongdong
    Wang, Chunping
    Fu, Qiang
    OPEN PHYSICS, 2024, 22 (01):
  • [38] RGB-D Object Tracking with Occlusion Detection
    Xie, Yujun
    Lu, Yao
    Gu, Shuang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 11 - 15
  • [39] RGB-T Object Detection With Failure Scenarios
    Wang, Qingwang
    Sun, Yuxuan
    Chi, Yongke
    Shen, Tao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 3000 - 3010
  • [40] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675