Artificial ecosystem selection for evolutionary optimisation

被引:0
|
作者
Williams, Hywel T. P. [1 ]
Lenton, Timothy M. [1 ]
机构
[1] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England
来源
关键词
artificial ecosystem selection; evolutionary optimisation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial selection of microbial ecosystems for their collective function has been shown to be effective in laboratory experiments. In previous work, we used evolutionary simulation models to understand the mechanistic basis of the observed ecosystem-level response to artificial selection. Here we extend this work to consider artificial ecosystem selection as a method for evolutionary optimisation. By allowing solutions involving multiple species, artificial ecosystem selection adds a new class of multi-species solution to the available search space, while retaining all the single-species solutions achievable by lower-level selection methods. We explore the conditions where multi-species solutions (that necessitate higher-level selection) are likely to be found, and discuss the potential advantages of artificial ecosystem selection as an optimisation method.
引用
收藏
页码:93 / +
页数:2
相关论文
共 50 条
  • [21] Evolutionary Feature Selection for Artificial Neural Network Pattern Classifiers
    Pham, D. T.
    Castellani, M.
    Fahmy, A. A.
    2009 7TH IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, VOLS 1 AND 2, 2009, : 658 - 663
  • [22] ARTIFICIAL SELECTION AND THE DEVELOPMENT OF EVOLUTIONARY-THEORY - BAJEMA,CJ
    EHRMAN, L
    QUARTERLY REVIEW OF BIOLOGY, 1983, 58 (02): : 253 - 254
  • [23] Evolutionary optimisation of enzymes
    Sutherland, JD
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2000, 4 (03) : 263 - 269
  • [24] Evolutionary optimisation: a tutorial
    TrAC Trends Anal Chem (Pers Ed), 4 (193-203):
  • [25] Evolutionary optimisation: a tutorial
    Wehrens, R
    Buydens, LMC
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 1998, 17 (04) : 193 - 203
  • [26] Evolutionary Algorithms and Artificial Immune Systems on a Bi-Stable Dynamic Optimisation Problem
    Jansen, Thomas
    Zarges, Christine
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 975 - 982
  • [27] Structural optimisation and input selection of an artificial neural network for river level prediction
    Leahy, Paul
    Kiely, Ger
    Corcoran, Gearoid
    JOURNAL OF HYDROLOGY, 2008, 355 (1-4) : 192 - 201
  • [28] A hybrid system of parallel simulated annealing and evolutionary selection for solving combinatorial optimisation problems
    Delport, V
    COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION - EVOLUTIONARY COMPUTATION & FUZZY LOGIC FOR INTELLIGENT CONTROL, KNOWLEDGE ACQUISITION & INFORMATION RETRIEVAL, 1999, 55 : 86 - 91
  • [29] Strong artificial selection in the wild results in predicted small evolutionary change
    Postma, E.
    Visser, J.
    Van Noordwijk, A. J.
    JOURNAL OF EVOLUTIONARY BIOLOGY, 2007, 20 (05) : 1823 - 1832
  • [30] Evolutionary optimisation of mechanical structures: Towards an integrated optimisation
    Marcelin, JL
    ENGINEERING WITH COMPUTERS, 1999, 15 (04) : 326 - 333