Artificial ecosystem selection for evolutionary optimisation

被引:0
|
作者
Williams, Hywel T. P. [1 ]
Lenton, Timothy M. [1 ]
机构
[1] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England
来源
关键词
artificial ecosystem selection; evolutionary optimisation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial selection of microbial ecosystems for their collective function has been shown to be effective in laboratory experiments. In previous work, we used evolutionary simulation models to understand the mechanistic basis of the observed ecosystem-level response to artificial selection. Here we extend this work to consider artificial ecosystem selection as a method for evolutionary optimisation. By allowing solutions involving multiple species, artificial ecosystem selection adds a new class of multi-species solution to the available search space, while retaining all the single-species solutions achievable by lower-level selection methods. We explore the conditions where multi-species solutions (that necessitate higher-level selection) are likely to be found, and discuss the potential advantages of artificial ecosystem selection as an optimisation method.
引用
收藏
页码:93 / +
页数:2
相关论文
共 50 条
  • [41] Development of optimal channel and power allocation through enhanced artificial ecosystem-based optimisation strategy
    Babu, T. Sarath
    Satyanarayana, Penke
    Rao, S. Nagaraja
    JOURNAL OF CONTROL AND DECISION, 2024, 11 (02) : 257 - 270
  • [42] Optimal identification of model parameters for PVs using equilibrium, coot bird and artificial ecosystem optimisation algorithms
    Diab, Ahmed A. Zaki
    Ezzat, Abdulsalam
    Rafaat, Amr E.
    Denis, Kotin A.
    Abdelsalam, Hany A.
    Abdelhamid, Ashraf M.
    IET RENEWABLE POWER GENERATION, 2022, 16 (10) : 2172 - 2190
  • [43] Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities
    Xie, Li
    Shou, Wenying
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [44] Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities
    Li Xie
    Wenying Shou
    Nature Communications, 12
  • [45] EVOLUTIONARY OPTIMISATION TECHNIQUES FOR BAND SELECTION IN DRONE-BASED HYPERSPECTRAL IMAGES FOR VEGETABLE CROPS MAPPING
    Sarma, Aanagha S.
    Nidamanuri, Brama Rao
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7384 - 7387
  • [46] Selection strategies for gravitational constant G in artificial physics optimisation based on analysis of convergence properties
    Xie, Liping
    Zeng, Jianchao
    Formato, Richard A.
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2012, 4 (06) : 380 - 391
  • [47] Speeding Up Evolutionary Multi-objective Optimisation Through Diversity-Based Parent Selection
    Osuna, Edgar Covantes
    Gao, Wanru
    Neumann, Frank
    Sudholt, Dirk
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 553 - 560
  • [48] Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial neural networks
    Abbot, John
    Marohasy, Jennifer
    ATMOSPHERIC RESEARCH, 2014, 138 : 166 - 178
  • [49] Zamin: An artificial ecosystem
    Halavati, R
    Shouraki, SB
    EURASIA-ICT 2002: INFORMATION AND COMMUNICATION TECHNOLOGY, PROCEEDINGS, 2002, 2510 : 1008 - 1016
  • [50] The ecosystem and evolutionary contexts of allelopathy
    Inderjit
    Wardle, David A.
    Karban, Richard
    Callaway, Ragan M.
    TRENDS IN ECOLOGY & EVOLUTION, 2011, 26 (12) : 655 - 662