Evolutionary Feature Selection for Artificial Neural Network Pattern Classifiers

被引:0
|
作者
Pham, D. T. [1 ]
Castellani, M. [1 ]
Fahmy, A. A. [1 ]
机构
[1] Cardiff Univ, Mfg Engn Ctr, Cardiff CF24 3AA, S Glam, Wales
关键词
D O I
10.1109/INDIN.2009.5195881
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents FeaSANNT, an evolutionary procedure for feature selection and weight training for neural network classifiers. FeaSANNT exploits the global nature of evolutionary search to avoid sub-optimal peaks of performance. FeaSANNT was used to train a multi-layer perceptron classifier on seven benchmark problems. FeaSANNT attained accurate and consistent learning results, and significantly reduced the number of data attributes compared to four state-of-the-art standard filter and wrapper feature selection methods. Thanks to the robustness of evolutionary search, FeaSANNT did not require time-consuming re-tuning of the learning parameters for each test problem.
引用
收藏
页码:658 / 663
页数:6
相关论文
共 50 条
  • [1] Evolutionary feature selection for spiking neural network pattern classifiers
    Valko, Michal
    Marques, Nuno C.
    Castellani, Marco
    [J]. 2005 Portuguese Conference on Artificial Intelligence, Proceedings, 2005, : 181 - 187
  • [2] Feature selection for modular neural network classifiers
    Guan, Sheng-Uei
    Li, Peng
    [J]. Journal of Intelligent Systems, 2002, 12 (03) : 173 - 200
  • [3] An Evolutionary Artificial Neural Network for Medical Pattern Classifi
    Tan, Shing Chiang
    Lim, Chee Peng
    Tan, Kay Sin
    Navarro, Jose C.
    [J]. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS, 2009, 5864 : 475 - +
  • [4] Feature selection for neural network classifiers using saliency and genetic algorithms
    DeRouin, E
    Brown, JR
    Denney, G
    [J]. APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE, 1998, 3390 : 322 - 331
  • [5] A fuzzy neural network for pattern classification and feature selection
    Li, RP
    Mukaidono, M
    Turksen, IB
    [J]. FUZZY SETS AND SYSTEMS, 2002, 130 (01) : 101 - 108
  • [6] A Joint Evolutionary Method Based on Neural Network For Feature Selection
    Zhang, Biying
    [J]. ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL I, PROCEEDINGS, 2009, : 7 - 10
  • [7] Evolving neural network classifiers and feature subset using artificial fish swarm
    Zhang, Meifeng
    Shao, Cheng
    Li, Fuchao
    Gan, Yong
    Sun, Junman
    [J]. IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 1598 - +
  • [8] Feature Selection with The Whale Optimization Algorithm and Artificial Neural Network
    Canayaz, Murat
    Demir, Murat
    [J]. 2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP), 2017,
  • [9] Dermatology Diagnosis with Feature Selection Methods and Artificial Neural Network
    Abdul-Rahman, Shuzlina
    Norhan, Ahmad Khairil
    Yusoff, Marina
    Mohamed, Azlinah
    Mutalib, Sofianita
    [J]. 2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES), 2012,
  • [10] Cross-validation with active pattern selection for neural-network classifiers
    Leisch, F
    Jain, LC
    Hornik, K
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (01): : 35 - 41