Reduction of Euler-Lagrange equations in gauge theories

被引:1
|
作者
Geyer, B [1 ]
Gitman, D
Tyutin, I
机构
[1] Univ Leipzig, Naturwisensch Theoret Zentrum, Leipzig, Germany
[2] Univ Leipzig, Inst Theoret Phys, Leipzig, Germany
[3] Univ Sao Paulo, Inst Phys, BR-05508 Sao Paulo, Brazil
[4] PN Lebedev Phys Inst, Moscow 117924, Russia
来源
关键词
gauge theories; lagrangian formulation;
D O I
10.1142/S0217751X03015519
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a reduction procedure to the so-called canonical form for the Euler-Lagrange equations of a general gauge theory. The reduction procedure reveals constraints in the Lagrangian formulation of singular theories and, in that respect, is similar to the Dirac procedure in the Hamiltonian formulation. Moreover, the reduction procedure allows one to reveal the gauge identities between the Euler-Lagrange equations. As a demonstration we apply the reduction procedure to theories without higher derivatives.
引用
收藏
页码:2077 / 2084
页数:8
相关论文
共 50 条
  • [41] ALMOST-PERIODIC OSCILLATIONS OF EULER-LAGRANGE EQUATIONS
    BLOT, J
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02): : 285 - 304
  • [42] Fractional Euler-Lagrange Equations Applied to Oscillatory Systems
    David, Sergio Adriani
    Valentim, Carlos Alberto, Jr.
    MATHEMATICS, 2015, 3 (02): : 258 - 272
  • [43] Theorem on the existence and uniqueness of the solution to Euler-Lagrange equations
    Zhao, Wei-Jia
    Pan, Zhen-Kuan
    Chen, Li-Qun
    Gongcheng Shuxue Xuebao/Chinese Journal of Engineering Mathematics, 2003, 20 (03):
  • [44] EULER-LAGRANGE EQUATIONS FOR FUNCTIONALS DEFINED ON FRECHET MANIFOLDS
    Antonio Vallejo, Jose
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2009, 16 (04) : 443 - 454
  • [45] Removable singularities of the Euler-Lagrange equations on a Hilbert manifold
    Pnevmatikos, S
    Pliakis, D
    Andreadis, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 877 - 882
  • [46] FROM EULER-LAGRANGE EQUATIONS TO CANONICAL NONLINEAR CONNECTIONS
    Neagu, Mircea
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 255 - 263
  • [47] Variational problems with fractional derivatives: Euler-Lagrange equations
    Atanackovic, T. M.
    Konjik, S.
    Pilipovic, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
  • [48] Existence of a weak solution for fractional Euler-Lagrange equations
    Bourdin, Loic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 239 - 251
  • [49] AV-differential geometry: Euler-Lagrange equations
    Grabowska, Katarzyna
    Grabowski, Janusz
    Urbanski, Pawel
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 1984 - 1998
  • [50] EULER-LAGRANGE RADICAL FUNCTIONAL EQUATIONS WITH SOLUTION AND STABILITY
    Ramdoss, Murali
    Pachaiyappan, Divyakumari
    Dutta, Hemen
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 351 - 365