ALMOST-PERIODIC OSCILLATIONS OF EULER-LAGRANGE EQUATIONS

被引:17
|
作者
BLOT, J
机构
来源
关键词
D O I
10.24033/bsmf.2233
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In order to show the existence of a.p. (almost Periodic solutions of a Euler-Lagrange equation with a convex lagrangian and an a.p. forcing term, we introduce an hilbertian space (like a Sobolev space) of Besicovitch-a.p. functions and a notion of weak a.p. solution. We use the calculus of variations in mean and the Minty-monotonic operators.
引用
收藏
页码:285 / 304
页数:20
相关论文
共 50 条
  • [1] Time almost-periodic solutions of the incompressible Euler equations
    Franzoi, Luca
    Montalto, Riccardo
    [J]. MATHEMATICS IN ENGINEERING, 2024, 6 (03): : 394 - 406
  • [2] On the generalized Euler-Lagrange equations
    Chen, JW
    Lai, HC
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 213 (02) : 681 - 697
  • [3] Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations
    Chmara, Magdalena
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (02): : 409 - 425
  • [4] EULER-LAGRANGE EQUATIONS ON CANTOR SETS
    Baleanu, Dumitru
    Yang, Xiao-Jun
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2013, VOL 4, 2014,
  • [5] On the global version of Euler-Lagrange equations
    Saraví, REG
    Solomin, JE
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (26): : 7301 - 7305
  • [6] Fractional Euler-Lagrange equations revisited
    Herzallah, Mohamed A. E.
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2012, 69 (03) : 977 - 982
  • [7] On a class of special Euler-Lagrange equations
    Yan, Baisheng
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023,
  • [8] On the Equivalence of Euler-Lagrange and Noether Equations
    A. C. Faliagas
    [J]. Mathematical Physics, Analysis and Geometry, 2016, 19
  • [9] Point symmetries of the Euler-Lagrange equations
    Torres del Castillo, G. F.
    [J]. REVISTA MEXICANA DE FISICA, 2014, 60 (02) : 129 - 135
  • [10] The Schwarzian derivative and Euler-Lagrange equations
    Krynski, Wojciech
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2022, 182